题目内容
12.如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,写出∠A、∠B、∠C、∠D之间关系为∠A+∠D=∠B+∠C;
(2)如图2,在(1)的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.
①若∠D=40°,∠B=36°,则∠P=38°;
②探究∠P与∠D、∠B之间有何数量关系,并说明理由.
分析 (1)利用三角形的内角和定理表示出∠AOD与∠BOC,再根据对顶角相等可得∠AOD=∠BOC,然后整理即可得解;
(2)根据(1)的关系式求出∠OCB-∠OAD,再根据角平分线的定义求出∠DAM-∠PCM,然后利用“8字形”的关系式列式整理即可得解;
(3)根据“8字形”用∠B、∠D表示出∠OCB-∠OAD,再用∠D、∠P表示出∠DAM-∠PCM,然后根据角平分线的定义可得∠DAM-∠PCM=$\frac{1}{2}$(∠OCB-∠OAD),然后整理即可得证.
解答
解:(1)在△AOD中,∠AOD=180°-∠A-∠D,
在△BOC中,∠BOC=180°-∠B-∠C,
∵∠AOD=∠BOC(对顶角相等),
∴180°-∠A-∠D=180°-∠B-∠C,
∴∠A+∠D=∠B+∠C,
故答案为;∠A+∠D=∠B+∠C;
(2)∵∠D=40°,∠B=36°,
∴∠OAD+40°=∠OCB+36°,
∴∠OCB-∠OAD=4°,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=$\frac{1}{2}$∠OAD,∠PCM=$\frac{1}{2}$∠OCB,
又∵∠DAM+∠D=∠PCM+∠P,
∴∠P=∠DAM+∠D-∠PCM=$\frac{1}{2}$(∠OAD-∠OCB)+∠D=$\frac{1}{2}$×(-4°)+40°=38°,
故答案为:38°;
(3)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,
所以,∠OCB-∠OAD=∠D-∠B,∠PCM-∠DAM=∠D-∠P,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=$\frac{1}{2}$∠OAD,∠PCM=$\frac{1}{2}$∠OCB,
∴$\frac{1}{2}$(∠D-∠B)=∠D-∠P,
整理得,2∠P=∠B+∠D.
点评 本题考查了三角形内角和定理,角平分线的定义,多边形的内角和定理,对顶角相等的性质,整体思想的利用是解题的关键.
| A. | 56° | B. | 28° | C. | 18° | D. | 14° |
| A. | 甲同学:平均数为2,中位数为2 | B. | 乙同学:中位数是2,唯一的众数为2 | ||
| C. | 丙同学:平均数是2,标准差为2 | D. | 丁同学:平均数为2,唯一的众数为2 |
| A. | x>-5 | B. | x≥-5 | C. | x≤-5 | D. | x≠-5 |