题目内容

如图,在等腰直角△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AC=6,则△BDE的周长等于
 
考点:角平分线的性质,等腰直角三角形
专题:
分析:根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,然后求出△BDE的周长=AB,再根据等腰直角三角形的性质求出AB,即可得解.
解答:解:∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴CD=DE,
在Rt△ACD和Rt△AED中,
AD=AD
CD=DE

∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
∴△BDE的周长=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,
∵∠C=90°,AC=BC,
∴AB=
2
AC=6
2

∴△BDE的周长=6
2

故答案为:6
2
点评:本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记各性质并求出△BDE的周长=AB是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网