题目内容
如图所示,为了测量某个池塘的宽DE,在岸边找一点C,测得CD=30m,在DC的延长线上找一点A,使AC=5m,过点A作AB∥DE交EC的延长线于点B,测得AB=6.5m,那么你能算出池塘的宽DE吗?
(2014广东)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB,AC,AD于点E,F,H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为ts(t>0).
(1)当t=2时,连接DE,DF,求证:四边形AEDF为菱形.
(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长.
(3)是否存在某一实数t,使△PEF为直角三角形?若存在,请求出t的值;若不存在,请说明理由.
如图①,已知四边形ABCD及点O,以O为位似中心,把四边形ABCD缩小为原来的,作出图形(一种即可),并简要说出作法.
如图,甲楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,1米长的标杆的影长是米,此时.
(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?
(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离是多少?
(2014湖南娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆影子的端点重合,此时竹竿与旗杆的距离DB=12m,则旗杆AB的高为________m.
已知△ABC∽△DEF,相似比为3︰1,且△ABC的周长为18,则△DEF的周长为( )
A.2 B. C.6 D.54
如图所示,在矩形ABCD中,,分别取AD,BC的中点E,F,则矩形ABFE的周长=________矩形ABCD的周长,并记为第一次分割;再分别取AB,EF的中点M,N,则矩形BMNF的周长=________矩形ABCD的周长,并记为第二次分割;……以此类推,第n次分割时,所得矩形周长=________矩形ABCD的周长.
如图,D,E分别是△ABC的边AB,AC上的点,∠B=∠1,AE=EC=4,BC=10,AB=12,则△ADE和△ACB的周长之比为( )
A.1︰2 B.1︰3 C.1︰4 D.1︰5
若△ABC∽△DEF,AB=5,BC=3,DF=7,EF=9,则△ABC与△DEF的相似比是( )
A. B. C. D.