题目内容
如图①,已知四边形ABCD及点O,以O为位似中心,把四边形ABCD缩小为原来的,作出图形(一种即可),并简要说出作法.
如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.
(1)求证:四边形EGFH是矩形;
(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.
如图所示,D,E分别是边AB,AC上的一点,DE∥BC,,则△ADE与四边形DBCE的面积之比为( )
A.1︰3 B.2︰3 C.4︰5 D.4︰9
如图所示,图中的小方格都是边长为1的小正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)求出△ABC与△A′B′C′的相似比;
(3)以点O为位似中心,在网格内画△A1B1C1,使它与△ABC的相似比等于.
(2014广西玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1︰2.已知△ABC的面积是3,则△A′B′C′的面积是( )
A.3 B.6 C.9 D.12
(2014贵州遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=________里.
如图所示,花丛中有一路灯AB,在灯光下,小明在点D处的影子DE=3米,沿BD方向行5米走到点G,这时小明的影长HG=5米.如果小明的身高为1.7米,求路灯AB的高度.(精确到0.1米)
如图所示,为了测量某个池塘的宽DE,在岸边找一点C,测得CD=30m,在DC的延长线上找一点A,使AC=5m,过点A作AB∥DE交EC的延长线于点B,测得AB=6.5m,那么你能算出池塘的宽DE吗?
操作:如图,在正方形ABCD中,P是CD上一动点(与C,D不重合),令三角板(一个锐角为30°)的直角顶点与点P重合,并且一条直角边始终过点B,另一直角边与正方形的某一边所在的直线交于点E.
探究:
(1)观察操作结果,哪一个三角形与△BPC相似?并说明理由.
(2)当点P位于CD的中点时,你找到的三角形与△BPC的相似比是多少?