题目内容
13.分析 延长FD到点G,过C作CG∥AB交FD的延长线于点M,可证明△EDF≌△CMD,可得CM=EF=AC,进一步得到结论;
解答 证明:
延长FD到点G,过C作CG∥AB交FD的延长线于点M,
则EF∥MC,
∴∠BAD=∠EFD=∠M,
在△EDF和△CMD中,$\left\{\begin{array}{l}{∠EFD=∠M}&{\;}\\{∠EDF=∠MDC}&{\;}\\{ED=DC}&{\;}\end{array}\right.$,
∴△EDF≌△CMD(AAS),
∴MC=EF=AC,
∴∠M=∠CAD,
∴∠BAD=∠CAD.
点评 本题考查了全等三角形的判定于性质、平行线的性质、等腰三角形的性质;证明三角形全等是解决问题的关键.
练习册系列答案
相关题目