题目内容

14.化简:$(\frac{x+2}{{{x^2}-2x}}-\frac{x-1}{{{x^2}-4x+4}})÷\frac{x-4}{x}$,然后请自选一个你喜欢的x值,再求原式的值.

分析 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.

解答 解:原式=[$\frac{(x+2)(x-2)}{x(x-2)^{2}}$-$\frac{x(x-1)}{x(x-2)^{2}}$]•$\frac{x}{x-4}$
=$\frac{{x}^{2}-4-{x}^{2}+x}{x(x-2)^{2}}$•$\frac{x}{x-4}$
=$\frac{x-4}{x(x-2)^{2}}$•$\frac{x}{x-4}$
=$\frac{1}{(x-2)^{2}}$,
当x=1时,原式=1.

点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网