题目内容
5.(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.
(2)在(1)的基础上,若∠APB=55°,求∠B的度数.
(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.
分析 (1)利用基本作图(作已知角的平分线)作AP平分∠DAB;
(2)先利用平行线的性质得∠DAP=∠APB=55°,再利用角平分线定义得∠BAP=∠DAP=55°,然后根据三角形内角和计算∠ABP的度数;
(2)先由∠BAP=∠APB得到BA=BP,再判断△ABF为等腰三角形得到AB=AF,所以AF=BP,则可判断四边形ABPF是平行四边形,然后加上AB=BP可判断四边形ABPF是菱形.
解答 (1)解:如图,AP为所作;![]()
(2)解:∵AD∥BC,
∴∠DAP=∠APB=55°,
∵AP平分∠DAB,
∴∠BAP=∠DAP=55°,
∴∠ABP=180°-55°-55°=70°;
(2)证明:∵∠BAP=∠APB,
∴BA=BP,
∵BE=FE,AE平分∠BAF,
∴△ABF为等腰三角形,
∴AB=AF,
∴AF=BP,
而AF∥BP,
∴四边形ABPF是平行四边形,
∵AB=BP,
∴四边形ABPF是菱形.
点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.
练习册系列答案
相关题目
20.
如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
| A. | 2π | B. | 4π | C. | 5π | D. | 6π |
15.下列分式的值,可以为零的是( )
| A. | $\frac{{x}^{2}+1}{x-1}$ | B. | $\frac{x+1}{{x}^{2}-1}$ | C. | $\frac{{x}^{2}+2x+1}{x+1}$ | D. | $\frac{x+1}{x-1}$ |