题目内容

6.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E,连接OC,DB,若∠CDB=30°,⊙O的半径为4$\sqrt{3}$cm,则弦CD的长为(  )
A.8$\sqrt{3}$cmB.12cmC.6$\sqrt{3}$cmD.8cm

分析 先根据垂径定理得出CE=$\frac{1}{2}$CD,再由圆周角定理求出∠BOC的度数,在Rt△OCE中,根据锐角三角函数的定义即可求出CE的长,进而得出结论.

解答 解:∵AB是⊙O的直径,弦CD⊥AB于点E,
∴CE=$\frac{1}{2}$CD,
∵∠CDB=30°,
∴∠BOC=2∠CDB=60°,
在Rt△OCE中,
∵OC=4$\sqrt{3}$cm,∠BOC=60°,
∴CE=OC×sin60°=4$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=6cm,
∴CD=2CE=12cm.
故选B.

点评 本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网