题目内容

如图,直线y=kx+2与x轴、y轴分别交于A、B两点,OA:OB=
1
2
.以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.
(1)求点A的坐标和k的值;
(2)求点C坐标;
(3)直线y=
1
2
x在第一象限内的图象上是否存在点P,使得△ABP的面积与△ABC的面积相等?如果存在,求出点P坐标;如果不存在,请说明理由.
考点:一次函数综合题
专题:综合题
分析:(1)对于直线y=kx+2,令x=0求出y的值,确定出B坐标,得到OB的长,根据OA与OB比值求出OA的长,确定出A坐标,代入直线方程即可求出k的值;
(2)过C作CM垂直于x轴,利用同角的余角相等得到一对角相等,再由一对直角相等,以及AC=AB,利用AAS得到三角形ACM与三角形BAO全等,由全等三角形对应边相等得到CM=OA,AM=OB,由AM+OA求出OM的长,即可确定出C坐标;
(3)假设存在点P使得△ABP的面积与△ABC的面积相等,在直线y=
1
2
x第一象限上取一点P,连接BP,AP,设点P(m,
1
2
m),由三角形ABO面积+三角形BPO面积-三角形AOP面积表示出三角形ABP面积,求出三角形AOB面积,两者相等求出m的值,即可确定出P坐标.
解答:解:(1)对于直线y=kx+2,令x=0,得到y=2,即B(0,2),OB=2,
∵OA:OB=
1
2
,∴OA=1,即A(-1,0),
将x=-1,y=0代入直线解析式得:0=-k+2,即k=2;

(2)过C作CM⊥x轴,可得∠AMC=∠BOA=90°,
∴∠ACM+∠CAM=90°,
∵△ABC为等腰直角三角形,即∠BAC=90°,AC=BA,
∴∠CAM+∠BAO=90°,
∴∠ACM=∠BAO,
在△CAM和△ABO中,
∠AMC=∠BOA=90°
∠ACM=∠BAO
AC=BA

∴△CAM≌△ABO(AAS),
∴AM=OB=2,CM=OA=1,即OM=OA+AM=1+2=3,
∴C(-3,1);

(3)假设存在点P使得△ABP的面积与△ABC的面积相等,在直线y=
1
2
x第一象限上取一点P,连接BP,AP,
设点P(m,
1
2
m),
∴S△ABP=S△ABO+S△BPO-S△AOP=1+m-
1
4
m=1+
3
4
m,而S△ABC=
1
2
AB•AC=
1
2
AB2=
1
2
(12+22)=
5
2

可得1+
3
4
m=
5
2

解得:m=2,
则P坐标为(2,1).
点评:此题属于一次函数综合题,涉及的知识有:坐标与图形性质,全等三角形的判定与性质,一次函数与坐标轴的交点,以及三角形面积求法,熟练掌握一次函数的性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网