ÌâÄ¿ÄÚÈÝ
20£®Èçͼ¢Ù£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OA=6£¬ÒÔOAΪ±ß³¤×÷µÈ±ßÈý½ÇÐÎABC£¬Ê¹µÃBC¡ÎOA£¬ÇÒµãB¡¢CÂäÔÚ¹ýÔµãÇÒ¿ª¿ÚÏòϵÄÅ×ÎïÏßÉÏ£®£¨1£©ÇóÕâÌõÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚͼ¢ÙÖУ¬¼ÙÉèÒ»¶¯µãP´ÓµãB³ö·¢£¬ÑØÕÛÏßBACµÄ·½ÏòÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÔ˶¯£¬Í¬Ê±ÁíÒ»¶¯µãQ´ÓOµã³ö·¢£¬ÑØxÖáµÄ¸º°ëÖá·½ÏòÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÔ˶¯£¬µ±µãPÔ˶¯µ½Aµãʱ£¬P¡¢Q¶¼Í¬Ê±Í£Ö¹Ô˶¯£¬ÔÚP¡¢QµÄÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚʱ¼ät£¬Ê¹µÃPQ¡ÍAB£¬Èô´æÔÚ£¬Çó³ötµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÔÚBC±ßÉÏÈ¡Á½µãE¡¢F£¬Ê¹BE=EF=1¸öµ¥Î»£¬ÊÔÔÚAB±ßÉÏÕÒÒ»µãG£¬ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÕÒÒ»µãH£¬Ê¹µÃËıßÐÎEGHFµÄÖܳ¤×îС£¬²¢Çó³öÖܳ¤µÄ×îСֵ£®
·ÖÎö £¨1£©ÓɵȱßÈý½ÇÐεÄÐÔÖÊ¿ÉÏÈÇóµÃB¡¢CµÄ×ø±ê£¬ÔÙÀûÓôý¶¨ÏµÊý·¨¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÓÃt¿É·Ö±ð±íʾ³öBP¡¢APºÍAQ£¬ÔÚRt¡÷APQÖУ¬¿ÉµÃµ½AQ=2AP£¬¿ÉµÃµ½¹ØÓÚtµÄ·½³Ì£¬¿ÉÇóµÃtµÄÖµ£»
£¨3£©×÷Eµã¹ØÓÚABµÄ¶Ô³ÆµãE¡ä£¬¿ÉÖªE¡äÔÚOBÉÏ£¬×÷F¹ØÓÚ¶Ô³ÆÖáµÄ¶Ô³ÆµãF¡ä£¬Á¬½ÓE¡äF¡ä£¬·Ö±ð½»ABÓÚG£¬½»¶Ô³ÆÖáÓÚH£¬ÔòE¡äF¡ä=EG+GH+HF£¬´ËʱËıßÐÎEGHFµÄÖܳ¤×îС£¬¹ýE¡ä¡¢F¡ä·Ö±ð×÷xÖáµÄ´¹Ïߣ¬¿É·Ö±ðÇóµÃE¡ä¡¢F¡äµÄ×ø±ê£¬¿ÉÇóµÃE¡äF¡äµÄ³¤£¬¿ÉÇóµÃËıßÐÎEGHFµÄÖܳ¤µÄ×îСֵ£®
½â´ð ½â£º
£¨1£©Èçͼ1£¬Á¬½ÓOB£¬·Ö±ð×÷BM¡ÍxÖᣬCN¡ÍxÖᣬ´¹×ã·Ö±ðΪM¡¢N£¬![]()
¡ßBC¡ÎxÖᣬ¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬
¡à¡ÏBAO=¡ÏABC=60¡ã£¬OA=AB=BC=6£¬
¡à¡÷OABΪµÈ±ßÈý½ÇÐΣ¬
¡àOM=$\frac{1}{2}$OA=3£¬BM=$\frac{\sqrt{3}}{2}$OB=3$\sqrt{3}$=CN£¬ÇÒON=OM+MN=OM+BC=9£¬
¡àB£¨3£¬3$\sqrt{3}$£©£¬C£¨9£¬3$\sqrt{3}$£©£¬
¡ßÅ×ÎïÏß¹ýÔµãO£¬
¡à¿ÉÉèÅ×ÎïÏß½âÎöʽΪy=ax2+bx£¬
°ÑB¡¢C×ø±ê´úÈë¿ÉµÃ$\left\{\begin{array}{l}{9a+3b=3\sqrt{3}}\\{81a+9b=3\sqrt{3}}\end{array}\right.$£¬½â$\left\{\begin{array}{l}{a=-\frac{\sqrt{3}}{9}}\\{b=\frac{4\sqrt{3}}{3}}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-$\frac{\sqrt{3}}{9}$x2+$\frac{4\sqrt{3}}{3}$x£»
£¨2£©Èçͼ2£¬Á¬½ÓPQ£¬![]()
ÓÉÌâÒâ¿ÉÖªBP=2t£¬OQ=t£¬ÔòAP=6-2t£¬AQ=6+t£¬
µ±PQ¡ÍABʱ£¬ÔÚ¡÷APQÖУ¬¡ÏPQA=30¡ã£¬
¡àAQ=2AP£¬
¡à6+t=2£¨6-2t£©£¬½âµÃt=$\frac{6}{5}$£¬
¡àµ±tµÄֵΪ$\frac{6}{5}$ʱ£¬PQ¡ÍAB£»
£¨3£©Èçͼ3£¬×÷Eµã¹ØÓÚABµÄ¶Ô³ÆµãE¡ä£¬¿ÉÖªE¡äÔÚOBÉÏ£¬×÷F¹ØÓÚ¶Ô³ÆÖáµÄ¶Ô³ÆµãF¡ä£¬Á¬½ÓE¡äF¡ä£¬·Ö±ð½»ABÓÚG£¬½»¶Ô³ÆÖáÓÚH£¬![]()
ÔòEG=E¡äG£¬FH=F¡äH£¬
ÓÉÏß¶Î×î¶Ì¿ÉÖª´ËʱEG+GH+FH=E¡äF¡ä£¬
Ôò´ËʱµÄG¡¢H¼´ÎªÂú×ãÌõ¼þµÄµã£¬¼´ËıßÐÎEGHFµÄÖܳ¤×îС£¬
·Ö±ð¹ýE¡ä£¬F¡ä£¬B×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪR¡¢S¡¢T£¬
ÓÉ£¨1£©¿ÉÖªBT=F¡äS=3$\sqrt{3}$£¬
¡ßBE=EF=1£¬
¡àBE¡ä=1£¬ÔòOE¡ä=OB-BE¡ä=5£¬AS=1£¬
¡àOS=OA+1=7£¬
¡àFµã×ø±êΪ£¨7£¬3$\sqrt{3}$£©£¬
ÔÚ¡÷ORE¡äÖУ¬OR=$\frac{1}{2}$OE¡ä=$\frac{5}{2}$£¬RE¡ä=$\frac{\sqrt{3}}{2}$OE¡ä=$\frac{5\sqrt{3}}{2}$£¬
¡àEµã×ø±êΪ£¨$\frac{5}{2}$£¬$\frac{5\sqrt{3}}{2}$£©£¬
¡àE¡äF¡ä=$\sqrt{£¨7-\frac{5}{2}£©^{2}+£¨3\sqrt{3}-\frac{5\sqrt{3}}{2}£©^{2}}$=$\sqrt{21}$£¬
¡ßEF=1£¬
¡àËıßÐÎEGHFµÄÖܳ¤×îСֵ=EF+E¡äF¡ä=1+$\sqrt{21}$£®
µãÆÀ ±¾ÌâΪ¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬É漰֪ʶµãÓдý¶¨ÏµÊý·¨¡¢µÈ±ßÈý½ÇÐεÄÐÔÖÊ¡¢Ö±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢Öá¶Ô³ÆµÄÐÔÖʵȣ®ÔÚ£¨1£©ÖÐÇóµÃB¡¢CµãµÄ×ø±êÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨2£©ÖаÑËùÇóÏß¶ÎÓÃt±íʾ³ö£¬»¯¶¯Îª¾²£¬ÔÚ£¨3£©ÖÐÈ·¶¨³öG¡¢HµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔºÜÇ¿£¬ÌرðÊǵڣ¨3£©ÎÊÊǸöÄѵ㣮
| A£® | 4 | B£® | 5 | C£® | 6 | D£® | 7 |
| A£® | a•sin¦È | B£® | a•tan¦È | C£® | a•cos¦È | D£® | $\frac{a}{tan¦È}$ |