题目内容
若单项式
x2my与2x4yn+3可以合并,那么m= ,n= .
| 1 |
| 3 |
考点:同类项
专题:推理填空题
分析:由已知它们可以合并即同类项,所以根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m和n的值,继而代入可得出答案.
解答:解:因为单项式
x2my与2x4yn+3可以合并,
所以是同类项,
则2m=4,m=2,
n+3=1,n=-2,
故答案为:2,-2.
| 1 |
| 3 |
所以是同类项,
则2m=4,m=2,
n+3=1,n=-2,
故答案为:2,-2.
点评:此题考查同类项的定义,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.
练习册系列答案
相关题目
已知两点A(1,2),B(3,1)到直线L的距离分别是
、
-
,则满足条件的直线L共有( )条.
| 2 |
| 5 |
| 2 |
| A、1 | B、2 | C、3 | D、4 |
| A、70° | B、80° |
| C、90° | D、100° |
设M=3n+2×17n,其中n为正整数,则下列结论正确的是( )
| A、有且只有一个n,使得M为完全平方数 |
| B、存在多于一个的有限个n,使得M为完全平方数 |
| C、存在无数个n,使得M为完全平方数 |
| D、不存在n,使得M为完全平方数 |