题目内容
7.求方程2xy-x-y-3=0的整数解.分析 先把方程变形为:(2x-1)(2y-1)=7,根据x,y为整数和(2x-1)(2y-1)=7=1×7=7×1=-1×(-7)=-7×(-1),得到方程组$\left\{\begin{array}{l}{2x-1=1}\\{2y-1=7}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=7}\\{2y-1′=1}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=-1}\\{2y-1=-7}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=-7}\\{2y-1=-1}\end{array}\right.$,得到原方程的四组解.
解答 解:∵2xy-x-y-3=0,
∴4xy-2x-2y-6=0
∴4xy-2x-2y+1=7,
∴(2x-1)(2y-1)=7
∵x,y为整数,
∴(2x-1)与(2y-1)也是整数,
而(2x-1)(2y-1)=7=1×7=7×1=-1×(-7)=-7×(-1),
∴$\left\{\begin{array}{l}{2x-1=1}\\{2y-1=7}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=7}\\{2y-1′=1}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=-1}\\{2y-1=-7}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=-7}\\{2y-1=-1}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=-3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-3}\\{y=0}\end{array}\right.$.
点评 本题是非一次不定方程(组),主要考查了求二元二次方程整数解的方法.代数式的变形能力以及整数的性质.等式的性质,分解因式,解本题的关键是把原方程变形为4xy-2x-2y+1=7之后的分解因式,难点是方程两边同时乘以2.
| 捐 款 (元) | 5 | 10 | 20 | A | 30 |
| 人 数 | 18 | 20 | B | 4 | 2 |
| x | -1 | 0 | 1 | 2 | 3 |
| y | 2 | 0 | 2 | 8 | 18 |
(2)将所求的函数先向下平移2个单位,然后再向右平移3个单位,最后关于x轴对称,此时图象分别于x轴交于A,B两点,与y轴交于C点,求:△ABC的面积.