题目内容

把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为(  )

A. B. 5 C. 4 D.

【答案】B

【解析】由旋转的性质可知,在图乙中,∠BCE1=15°,∠D1CE1=60°,AB=6,CD1=CD=7,

∴∠D1CB=60°-15°=45°,

又∵∠ACB=90°,

∴CO平分∠ACB,

又∵AC=BC,

∴CO⊥AB,且CO=AO=BO=AB=3,

∴D1O=CD1-CO=7-3=4,∠AOD1=90°,

∴在Rt△AOD1中,AD1=.

故选B.

点睛:本题解题的关键是由旋转的性质证明:∠D1CB=45°,从而得到CD1平分∠ACB,结合等腰三角形的“三线合一”证得∠AOD1=90°,并求得AO=3,OD1=4;这样问题就变得很简单了.

【题型】单选题
【结束】
10

我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有(   )个.

①甲队每天挖100米;

②乙队开挖两天后,每天挖50米;

③当x=4时,甲、乙两队所挖管道长度相同;

④甲队比乙队提前2天完成任务.

A. 1                                            B. 2                                            C. 3                                            D. 4

D 【解析】①甲队每天挖=100米,正确. ②乙队开挖两天后,每天挖; 米,正确. ③当x=4时,甲、乙两队交点在x=4处,所以挖管道长度相同.正确. ④由②知,甲挖完的时候,乙还有100米,1002. 甲队比乙队提前2天完成任务.正确. 故选D.
练习册系列答案
相关题目

先化简,再求值: ÷(-a+2),其中a=2sin60°+3tan45°.

【答案】﹣.

【解析】试题分析:先因式分解,再通分,约分化简,代入数值求值.

试题解析:

【解析】
原式= ÷(-

=÷=

∵a=2sin60°+3tan45°=2×+3×1=+3

∴原式==﹣.

点睛:辨析分式与分式方程

分式,整式A除以整式B,可以表示成的的形式.如果B中含有字母,那么称 为分式.分式特点是没有等号,分式加减一般需要通分.

(2)分式方程,分母中含有未知数的方程叫做分式方程.特点是有等号,要先确定最简公分母,去分母的时候要每一项乘以最简公分母,所以一般不需要通分,而且要检验.

【题型】解答题
【结束】
22

图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.

(1)如图1,在小正方形的顶点上确定一点C,连接AC、BC,使得△ABC为直角三角形,其面积为5,并直接写出△ABC的周长;

(2)如图2,在小正方形的顶点上确定一点D,连接AD、BD,使得△ABD中有一个内角为45°,且面积为3.

(1)5+3;(2)3. 【解析】试题分析:(1)构造直角三角形,AB=且是直角边,面积是5,可以求出另外一条直角边BC长度,最后连接AC. (2)先构造一个45°角,再利用面积是3,可画出图象. 试题解析: (1)【解析】 如图1所示:△ABC即为所求, △ABC的周长为: +2+5=5+3; (2)【解析】 如图2所示:△ABD中,∠ADB=45°,且面...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网