题目内容

如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.

x>3. 【解析】试题解析:当x>3时,x+b>kx+6, 即不等式x+b>kx+6的解集为x>3.
练习册系列答案
相关题目

已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=∠A,则此三角形(  )

A. 一定有一个内角为45° B. 一定有一个内角为60°

C. 一定是直角三角形 D. 一定是钝角三角形

C 【解析】试题解析:∵∠A+∠B+∠C=180°,∠B+∠C=∠A, ∴2∠A=180°, ∴∠A=90°, 即△ABC一定是直角三角形; 故选C.

已知二次函数y=2x2+bx﹣1.

(1)求证:无论b取什么值,二次函数y=2x2+bx﹣1图象与x轴必有两个交点.

(2)若两点P(﹣3,m)和Q(1,m)在该函数图象上.

①求b、m的值;

②将二次函数图象向上平移多少单位长度后,得到的函数图象与x轴只有一个公共点?

(1)无论b取什么值,二次函数y=2x2+bx﹣1图象与x轴必有两个交点. (2)b=4,m=5;(3)二次函数图象向上平移3个单位 【解析】 试题分析:(1)先计算判别式的值,再利用非负数的性质可判断△=>0,然后根据判别式的意义可判断抛物线与x轴必有两个交点; (2)①先利用抛物线的对称性可确定抛物线的对称轴方程,从而可求出b的值,然后计算自变量为1所对应的函数值即可得...

已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且x3<﹣1<x1<x2,则y1,y2,y3的大小关系是(  )

A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3

D 【解析】因为抛物线的对称轴为直线x=-1,开口向下,P1(x1,y1),P2(x2,y2)是抛物线上的点,且-1<x1<x2,根据二次函数的性质:在对称轴的右侧,y随x的增大而减小,可得y2< y1;P3(x3,y3)是直线l上的点,直线y随x的增大而减小,且x3<-1,由图象可知,直线上x3对应的函数值y3大于-1对应的函数值,又因x=-1时,抛物线的顶点最高,可得y3最大,所以y2<...

课外阅读课上,老师将43本书分给各小组,每组8本,还有剩余;每组9本却又不够,问有几个小组?

x=5. 【解析】试题分析:根据题意中的不等关系,设有x个小组,列不等式组求解,然后判断出正整数解即可. 试题解析:设有x个小组,题意得,解得:<x<,因为x为正整数,所以x=5.

对于不等式组 下列说法正确的是(  )

A. 此不等式组无解 B. 此不等式组有7个整数解

C. 此不等式组的负整数解是﹣3,﹣2,﹣1 D. 此不等式组的解集是<x≤2

B 【解析】分别解两个不等式得到x≤4和x>﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断. 【解析】 , 解①得x≤4, 解②得x>﹣2.5, 所以不等式组的解集为﹣2.5<x≤4, 所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4. 故选B. “点睛”本题考查了一元一次不等式组的整数【...

如图所示,在四边形ABCD中,已知AB与 CD不平行,∠ABD=∠ACD,请你添加一个条件:______ ,使的加上这个条件后能够推出AD∥BC ,且AB=CD.

∠DAC=∠ADB或∠BAD=∠CDA或∠DBC=∠ACB或∠ABC=∠DCB或OB=OC或OA=OD. 【解析】试题分析:先证四边形AECO是梯形,再说明是等腰梯形.由题意可知,∠ABD=∠ACD,AD是△BAD和△CDA的公共边,则可以再添加一组角∠DAC=∠ADB或∠BAD=∠CDA,同理可添加∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD,从而推出AD∥BC且AB=C...

在□ABCD中,∠A∶∠B∶∠C∶∠D的值可以是( )

A.1∶2∶3∶4 B.1∶2∶2∶1

C.1∶1∶2∶2 D.2∶1∶2∶1

D. 【解析】 试题解析:∵四边形ABCD是平行四边形, ∴∠A=∠C,∠B=∠D,AB∥CD, ∴∠B+∠C=180°,∠A+∠D=180°, 即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D, 故选D.

函数中自变量x的取值范围在数轴上表示正确的是( )

A.

B.

C.

D.

A. 【解析】 试题分析:由函数,得到3x+6≥0,解得:x≥﹣2,表示在数轴上,如图所示: 故选A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网