题目内容

12.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的张数分别为(  )
A.2,3,7B.3,7,2C.2,5,3D.2,5,7

分析 根据长方形的面积=长×宽,求出长为a+3b,宽为2a+b的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.

解答 解:长为a+3b,宽为2a+b的长方形的面积为:
(a+3b)(2a+b)=2a2+7ab+3b2
∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,
∴需要A类卡片2张,B类卡片3张,C类卡片7张.
故选:A.

点评 此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网