题目内容

13.甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率.从工作开始到加工完这批零件两台机器恰好同时工作6小时.甲、乙两台机器各自加工的零件个数y(个)与加工时间x(时)之间的函数图象分别为折线OA-AB与折线OC-CD.如图所示.
(1)求甲机器改变工作效率前每小时加工零件的个数.
(2)求乙机器改变工作效率后y与x之间的函数关系式.
(3)求这批零件的总个数.

分析 (1)甲改变工作效率前的工作效率为改变前加工的总件数,除以加工的总时间即可;
(2)利用待定系数法求一次函数解析式即可;
(3)利用函数解析式求出甲、乙两机器6小时加工的总件数,求其和即可.

解答 解:(1)80÷4=20(件);

(2)设AB与CD的交点为P,由图可以P坐标为(5,110)
∵图象过C(2,80),P(5,110),
∴设解析式为y=kx+b(k≠0),
∴$\left\{\begin{array}{l}{2k+b=80}\\{5k+b=110}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=10}\\{b=60}\end{array}\right.$,
∴y=10x+60(2≤x≤6);

(3)∵AB过(4,80),P(5,110),
∴设AB的解析式为y=mx+n(m≠0),
∴$\left\{\begin{array}{l}{4m+n=80}\\{5m+n=110}\end{array}\right.$,解得:$\left\{\begin{array}{l}{m=30}\\{n=-40}\end{array}\right.$,
∴y=30x-40(4≤x≤6),
当x=6时,y=30×6-40=140,y=10×6+60=120,
∴这批零件的总个数是140+120=260.

点评 此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网