题目内容

3.如图,在四边形ABCD中,AD∥BC,AB=DC,∠ABC=∠BCD,E为AD中点,连接BE,CE
(1)求证:BE=CE;
(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.

分析 (1)由等腰梯形ABCD中,AD∥BC,AB=DC,根据等腰梯形同一底上的两个角相等,可证得∠BAE=∠CDE,继而可证得△BAE≌△CDE,则可证得BE=CE;
(2)首先延长CD和BE的延长线交于H,易证得△BEG≌△CEH与△GED≌△HED,则可证得BG=DG+CD.

解答 解:∵等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,
∴∠BAE=∠CDE,AE=DE,
在△BAE与△CDE中,
$\left\{\begin{array}{l}{AB=DC}\\{∠BAE=∠CDE}\\{AE=DE}\end{array}\right.$,
∴△BAE≌△CDE(SAS),
∴BE=CE;
(2)延长CD和BE的延长线交于H,
∵BF⊥CD,∠BEC=90°,
∴∠HEC=90°,
∴∠EBF+∠H=∠ECH+∠H=90°,
∴∠EBF=∠ECH,
在△BEG和△CEH中,
$\left\{\begin{array}{l}{∠EBF=∠ECH}\\{BE=CE}\\{∠BEC=∠CEH=90°}\end{array}\right.$,
∴△BEG≌△CEH(ASA),
∴EG=EH,BG=CH=DH+CD,
∵△BAE≌△CDE,
∴∠AEB=∠GED,
∠HED=∠AEB,
∴∠GED=∠HED,
在△GED和△HED中,
$\left\{\begin{array}{l}{EG=EH}\\{∠GED=∠HED}\\{ED=ED}\end{array}\right.$,
∴△GED≌△HED(SAS),
∴DG=DH,
∴BG=DG+CD

点评 此题考查了等腰梯形的性质、等腰三角形的性质以及全等三角形的判定与性质.此题难度较大,解题的关键是准确作出辅助线,利用数形结合思想求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网