题目内容

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2﹣10x+16=0的两个根,且抛物线的对称轴是直线x=﹣2.

(1)求A、B、C三点的坐标;

(2)求此抛物线的表达式;

(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

(1)A的坐标为(﹣6,0),点B的坐标为(2,0),点C的坐标为(0,8);(2)y=﹣x2﹣x+8;(3)S=﹣m2+4m,自变量m的取值范围是0<m<8 ;(4)点E的坐标为(﹣2,0),△BCE为等腰三角形. 【解析】试题分析:(1)解方程x2﹣10x+16=0得x1=2,x2=8 ;根据点B、C的位置则可得B、C的坐标,再根据抛物线的对称性则可得点A的坐标; (2)根据(1)...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网