题目内容

2.如图在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转到△ADE的位置,使得EC∥AB,则∠CAE度数为(  )
A.30°B.35°C.40°D.50°

分析 根据旋转的性质得AE=AC,∠BAD=∠EAC,再根据等腰三角形的性质得∠AEC=∠ACE,然后根据平行线的性质由CE∥AB得∠ACE=∠CAB=70°,则∠AEC=∠ACE=70°,再根据三角形内角和计算出∠CAE=40°即可.

解答 解:∵△ABC绕点A逆时针旋转到△AED的位置,
∴AE=AC,∠BAD=∠CAE,
∴∠ACE=∠AEC,
∵CE∥AB,
∴∠ACE=∠CAB=70°,
∴∠AEC=∠ACE=70°,
∴∠CAE=180°-2×70°=40°;
故选:C.

点评 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网