【题目】某地区随着经济的发展,居民收入逐年增长,银行储蓄连年增长,下表是该地区某银行连续五年的储蓄存款(年底结算):
年份 |
|
|
|
|
|
储蓄存款 |
|
|
|
|
|
为方便研究,工作人员对上表的数据做了如下处理:
,
得到下表:
|
|
|
|
|
|
|
|
|
|
|
|
(1)用最小二乘法求出
关于
的线性回归方程
;
(2)通过(1)中的方程,求出
关于
的线性回归方程,并用所求回归方程预测
年底,该地储蓄存款额可达多少?
(附:参考公式
,其中
,
)
【题目】在创建“全国文明卫生城市”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的
人的得分(满分100分)统计结果如下表所示:
组别 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
(1)由频数分布表可以大致认为,此次问卷调查的得分
服从正态分布
,
近似为这
人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求![]()
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于
的可以获赠
次随机话费,得分低于
的可以获赠
次随机话费;
②每次获赠的随机话费和对应的概率为:
赠送话费的金额(单位:元) |
|
|
概率 |
|
|
现有市民甲参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列与均值.
附:参考数据与公式![]()
若
,则
=0.9544,![]()