【题目】设函数.
(1)请作出该函数在长度为一个周期的闭区间的大致图象;
(2)试判断该函数的奇偶性,并运用函数的奇偶性定义说明理由;
(3)求该函数的单调递增区间.
【题目】在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,,,
以AC的中点O为球心,AC为直径的球面交PD于点M,交PC于点N.
(1)求证:平面ABM⊥平面PCD;
(2)求直线CD与平面ACM所成角的大小;
(3)求点N到平面ACM的距离.
【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分
沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).
(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?
(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).
【题目】在xOy平面上,将双曲线的一支 及其渐近线和直线、围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为,过 作的水平截面,计算截面面积,利用祖暅原理得出体积为________
【题目】在△ABC中,“cosA>cosB”是“sinA<sinB”的 ( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件
【题目】设函数.
(1)请指出函数的定义域、周期性和奇偶性;(不必证明)
(2)请以正弦函数的性质为依据,并运用函数的单调性定义证明:在区间上单调递减.
【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是 的中点.(12分)(Ⅰ)设P是 上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.
【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )
A. 6 B. 8 C. 12 D. 18
【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为 ,求线段AH的长.
【题目】“三个内角的度数可以构成等差数列”是“中有一个内角为”的( )
A. 充分不必要条件B. 必要不充分条件
C. 充要条件D. 既不充分也不必要条件