例4. 已知函数y=cos2x+sinx?cosx+1  (x∈R),

(1)当函数y取得最大值时,求自变量x的集合;

(2)该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?

解:(1)y=cos2x+sinx?cosx+1= (2cos2x-1)+ +(2sinx?cosx)+1

=cos2x+sin2x+=(cos2x?sin+sin2x?cos)+

=sin(2x+)+

所以y取最大值时,只需2x+=+2kπ,(k∈Z),即  x=+kπ,(k∈Z)。

所以当函数y取最大值时,自变量x的集合为{x|x=+kπ,k∈Z}

(2)将函数y=sinx依次进行如下变换:

(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;

(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;

(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图像;

(iv)把得到的图像向上平移个单位长度,得到函数y=sin(2x+)+的图像。

综上得到y=cos2x+sinxcosx+1的图像。

说明:本题是2000年全国高考试题,属中档偏容易题,主要考查三角函数的图像和性质。这类题一般有两种解法:一是化成关于sinx,cosx的齐次式,降幂后最终化成y=sin (ωx+)+k的形式,二是化成某一个三角函数的二次三项式。本题(1)还可以解法如下:当cosx=0时,y=1;当cosx≠0时,y=+1=+1

化简得:2(y-1)tan2x-tanx+2y-3=0

∵tanx∈R,∴△=3-8(y-1)(2y-3) ≥0,解之得:≤y≤

∴ymax=,此时对应自变量x的值集为{x|x=kπ+,k∈Z}

 0  7701  7709  7715  7719  7725  7727  7731  7737  7739  7745  7751  7755  7757  7761  7767  7769  7775  7779  7781  7785  7787  7791  7793  7795  7796  7797  7799  7800  7801  7803  7805  7809  7811  7815  7817  7821  7827  7829  7835  7839  7841  7845  7851  7857  7859  7865  7869  7871  7877  7881  7887  7895  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网