例3.在的展开式中x的系数为( ).

(A)160            (B)240              (C)360           (D)800

分析与解:本题要求展开式中x的系数,而我们只学习过多项式乘法法则及二项展开式定理,因此,就要把对x系数的计算用上述两种思路进行转化:

思路1:直接运用多项式乘法法则和两个基本原理求解,则展开式是一个关于x的10次多项式, =(x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2),它的展开式中的一次项只能从5个括号中的一个中选取一次项3x并在其余四个括号中均选 择常数项2相乘得到,故为?(3x)??24=5×3×16x=240x,所以应选(B).

思路2 利用二项式定理把三项式乘幂转化为二项式定理再进行计算,∵x2+3x+2=x2+ (3x+2)=(x2+2)+3x=(x2+3x)+2=(x+1)(x+2)=(1+x)(2+x),∴这条思路下又有四种不同的化归与转化方法.①如利用x2+3x+2=x2+(3x+2)转化,可以发现只有(3x+2)5中会有x项,即(3x)?24=240x,故选(B);②如利用x2+3x+2= (x2+2)+3x进行转化,则只 (x2+2) 4?3x中含有x一次项,即?3x?C44?24=240x;③如利用x2+3x+2=(x2+3x)+2进行转化,就只有?(x2+3x)?24中会有x项,即240x;④如选择x2+3x+2=(1+x)(2+x)进行转化,=×展开式中的一次项x只能由(1+x)5中的一次项乘以(2+x)5展开式中的常数项加上(2+x)5展开式中的一次项乘以(1+x)5展开式中的常数项后得到,即为x?25+•24•x••15=160x+80x=240x,故选(B). 

评注:化归与转化的意识帮我们把未知转化为已知。

 0  7687  7695  7701  7705  7711  7713  7717  7723  7725  7731  7737  7741  7743  7747  7753  7755  7761  7765  7767  7771  7773  7777  7779  7781  7782  7783  7785  7786  7787  7789  7791  7795  7797  7801  7803  7807  7813  7815  7821  7825  7827  7831  7837  7843  7845  7851  7855  7857  7863  7867  7873  7881  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网