9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.
8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .
7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .
6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .
5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.
4、能在具体情境中,了解全集与空集的含义.
3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.
2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.
本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁
性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .
函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .
1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.
2.若一次函数y=(1-2m)x+3图象经过A(x1、y1)、B(x2、y2)两点.当x1<x2时,y1>y2,则m的取值范围是什么?