20、解析:(Ⅰ)当,
()
经验,()式成立,
(Ⅱ)成等比数列,,
即,整理得:,
对任意的成立,
|
(I)若函数的图象过原点,且在原点处的切线斜率是,求的值;
(II)若函数在区间上不单调,求的取值范围.
解析:(Ⅰ)由题意得
又 ,解得,或
(Ⅱ)函数在区间不单调,等价于
导函数在既能取到大于0的实数,又能取到小于0的实数
即函数在上存在零点,根据零点存在定理,有
, 即:
整理得:,解得
|
(I)求与的值;
(II)设抛物线上一点的横坐标为,过的直线交于另一点,交轴于
点,过点作的垂线交于另一点.若是的切线,求的最小值.
19.(Ⅰ)证明:连接, 在中,分别是的中点,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD
(Ⅱ)在中,,所以
而DC平面ABC,,所以平面ABC
而平面ABE, 所以平面ABE平面ABC, 所以平面ABE
由(Ⅰ)知四边形DCQP是平行四边形,所以
所以平面ABE, 所以直线AD在平面ABE内的射影是AP,
所以直线AD与平面ABE所成角是
在中, ,
所以
|
(I) 求及;
(II)若对于任意的,,,成等比数列,求的值.
|
. (I)求的面积; (II)若,求的值.
18.解析:(Ⅰ)
又,,而,所以,所以的面积为:
(Ⅱ)由(Ⅰ)知,而,所以
所以
|