4.解题途径:
当物体在两个共点力作用下平衡时,这两个力一定等值反向;当物体在三个共点力作用下平衡时,往往采用平行四边形定则或三角形定则;当物体在四个或四个以上共点力作用下平衡时,往往采用正交分解法。
[例13]重G的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化?
解:由于挡板是缓慢转动的,可以认为每个时刻小球都处于静止状态,因此所受合力为零。应用三角形定则,G、F1、F2三个矢量应组成封闭三角形,其中G的大小、方向始终保持不变;F1的方向不变;F2的起点在G的终点处,而终点必须在F1所在的直线上,由作图可知,挡板逆时针转动90°过程,F2矢量也逆时针转动90°,因此F1逐渐变小,F2先变小后变大。(当F2⊥F1,即挡板与斜面垂直时,F2最小)
[例14]重G的均匀绳两端悬于水平天花板上的A、B两点。静止时绳两端的切线方向与天花板成α角。求绳的A端所受拉力F1和绳中点C处的张力F2。
解:以AC段绳为研究对象,根据判定定理,虽然AC所受的三个力分别作用在不同的点(如图中的A、C、P点),但它们必为共点力。设它们延长线的交点为O,用平行四边形定则作图可得:,。
[例15]有一个直角支架AOB,AO水平放置,表面粗糙, OB竖直向下,表面光滑。AO上套有小环P,OB上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示)。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力FN和摩擦力f的变化情况是
A.FN不变,f变大 B.FN不变,f变小
C.FN变大,f变大 D.FN变大,f变小
解:以两环和细绳整体为对象求FN,可知竖直方向上始终二力平衡,FN=2mg不变;以Q环为对象,在重力、细绳拉力F和OB压力N作用下平衡,设细绳和竖直方向的夹角为α,则P环向左移的过程中α将减小,N=mgtanα也将减小。再以整体为对象,水平方向只有OB对Q的压力N和OA 对P环的摩擦力f作用,因此f=N也减小。答案选B。
[例16]A的质量是m,A、B始终相对静止,共同沿水平面向右运动。当a1=0和a2=0.75g时,B对A的作用力FB各多大?
解:一定要审清题:B对A的作用力FB是B对A的支持力和摩擦力的合力。而A所受重力G=mg和FB的合力是F=ma。
当a1=0时,G与 FB二力平衡,所以FB大小为mg,方向竖直向上。
当a2=0.75g时,用平行四边形定则作图:先画出重力(大小和方向),再画出A所受合力F的大小和方向,再根据平行四边形定则画出FB。由已知可得FB的大小FB=1.25mg,方向与竖直方向成370角斜向右上方。
[例17] 如图所示,两物体A和B,质量分别为M和m。用跨过定滑轮的轻绳相连,A静止于水平地面上,不计定滑轮与各个接触物体之间的摩擦。物体A对轻绳的作用力的大小和地面对物体A的作用力的大小分别是多少?
分析与解答:本题的关键词语有:“静止”、“轻绳”、“不计……摩擦”。
对B进行受力分析:竖直向下的重力和竖直的向上轻绳对物体B的拉力。
对A进行受力分析:竖直向下的重力、竖直向上的轻绳对物体A的拉力和竖直向上的地面对物体A的支持力。其中轻绳对物体A和轻绳对物体B的拉力是相等的。
根据物体A和物体B都处于静止状态可知,轻绳对物体B的拉力等于物体B的重力;轻绳对物体B的拉力等于物体B对轻绳的拉力(这是一对作用力和反作用力),轻绳对物体A的作用力等于轻绳中的张力,即等于物体B的重力。
对于物体A,根据平衡知识可知,物体A受到的重力等于轻绳对物体A的拉力与地面对物体A的支持力的和。又轻绳对物体A的拉力等于物体B的重力,所以,地面对物体A的支持力等于物体A的重力减去轻绳对物体A的拉力,即等于物体A的重力减去物体B的重力。
[续问](1)物体A对地面的压力(等于地面对物体A的支持力);(2)物体B对轻绳的拉力(等于物体B的重力);(3)另一段轻绳对天花板的拉力(等于两倍物体B的重力)。
[变形]连接物体A的轻绳与竖直线之间有一夹角θ,整个装置仍处于静止状态。
这时轻绳中的拉力仍等于物体B的重力,物体A将受到地面水平方向的摩擦力作用,大小等于物体B的重力乘以θ角的正弦;地面对物体A的支持力等于物体A受到的重力减去物体B的重力与θ角的余弦的积。地面对物体A的作用力自己可以推导;若定滑轮的质量不计,还可以求另一段轻绳对天花板的作用力的大小和方向{方向与竖直线的夹角为θ/2;大小为2mgcos(θ/2)}。
[例18]重力为G的物体A受到与竖直方向成α角的外力F后,静止在竖直墙面上,如图所示,试求墙对物体A的静摩擦力。
分析与解答:
这是物体静力平衡问题。首先确定研究对象,对研究对象进行受力分析,画出受力图。A受竖直向下的重力G,外力F,墙对A水平向右的支持力N,以及还可能有静摩擦力f。这里对静摩擦力的有无及方向的判断是极其重要的。物体之间有相对运动趋势时,它们之间就有静摩擦力;物体间没有相对运动趋势时,它们之间就没有静摩擦力。那么有无静摩擦力的鉴别,关键是对相对运动趋势的理解。我们可以假设接触面是光滑的,若不会相对运动,物体将不受静摩擦力,若有相对运动就有静摩擦力。
(注意:这种假设的方法在研究物理问题时是常用的方法,也是很重要的方法。)
正确的答案应该是:
当 Fcosα=G时,物体A在竖直方向上受力已经平衡,故静摩擦力为零;
当 Fcosα<G时,物体有向下滑动的趋势,故静摩擦力f的方向向上,大小为G-F·cosα;
当 Fcosα>G时,物体有向上滑动的趋势,故静摩擦力f的方向向下,大小为 Fcosα-G。
注意:墙对物体的支持力为N,N=F·sinα,但不能用f=μN来计算静摩擦力。f=μN只适用于滑动摩擦力的计算,在高中学习的范围,我们认为最大静摩擦力与滑动摩擦力相等。
[例19]如图示,大小为20N、30N和40N的三个力作用于物体一点上,夹角互为120°,求合力的大小和方向。
分析与解答:不在一条直线上的共点力合成应遵从平行四边形法则。
方法一:设F1=20N,F2=30N,F3=40N,可用代数法(公式法)求解。先求出F1和F2的合力F12的大小和方向,然后再将F12与F3合成求出大小和方向,此法计算准确误差小但过于繁杂。
方法二:利用作图法求解,没有繁杂的计算,但作图误差不可避免,大小和方向都会产生误差。
方法三:可用分解后再合成,化复杂为简单,选取平面直角坐标系如图所示。将F2、F1沿坐标轴方向分解[分解的矢量越少越好,这就是选取坐标系的原则]:
ΣFx=F1x+F2x+F3x=-F1cos30°+F2cos30°+0=-20×+30×=5N
ΣFy=F1y+F2y+F3y=-F1sin30°+F2sin30°-F3=20×+30×-40=-15N
∑F===10N
tanθ===,即θ=-600
F与x轴正方向夹角为600,如图所示。
方法四:利用已知的结论进行解题往往更简捷,特别是在填空、选择题中发挥明显的优势。
三个大小相等互为120°角的三个共点力的合力为零,这一点很容易证明,如果我们把F2、F3中的20N与F1进行合成,合力便为零,此题就简化为一个10N和一个20N的两个力夹角为120°的合成问题,这时不管是用计算法还是作图法都会觉得很方便且容易得多。
方法五:若仍用方法四中的思路,而是每个力中取30N,F3则再将加上-10N,F1再加10N即可,这样此题就简化成两个夹角为60°、大小均为10N的两个力的合成问题,利用直角三角形的知识即可解决,不必经分解后再合成的迂回步骤。可见一题多解是训练思维的好方法,是提高能力的有效措施。
[例20]如图所示,一块木块被两块木板夹在中间静止不动,在两侧对两木板所加水平方向力的大小均为N,木块的质量为m。
(1)木块与木板间的静摩擦力是多少?
(2)若木块与木板间的最大静摩擦系数为μ,欲将木块向下或向上抽出,则所需的外力F各多大?
(1)由于木块处于平衡状态,且木块两侧均分别与木板接触,所以木块两侧均受向上的静摩擦力,其大小的总和与重力相等,如图所示,即2f=mg,所以木块与木板间的静摩擦力为f=mg/2。
(2)若对木块施加一向下的外力F,木块仍处于平衡状态,则木块所受的静摩擦力方向仍向上,且随着外力F的增大而增大,如图所示。当静摩擦力增大到最大静摩擦力时,本块开始相对于木板滑动,这时可将木块从木板中抽出,有:F+mg=2fmax,其中fmax为最大静摩擦力,且fmax=μN,所以F=2μN-mg。
(3)当对木块加一向上的力F时,开始木块所受静摩擦力方向向上,且随F的增加而减小。当F增大到一定值时,恰好使木块的静摩擦力为零。这时若F继续增加,则木块受的静摩擦力向下,且随F的增大而增大,当F增大到一定程度,木块的静摩擦力为最大静摩擦力,这时,木块将被向上抽出,如图所示。有:F=mg+2fmax,其中fmax为最大静摩擦力,且fmax=μN,所以F=mg+2μN。
所以欲将木块向下抽出,至少需加2μN-mg的外力,欲将木块向上抽出,至少需加2μN+mg的外力。
[例21]用绳将球A挂在光滑竖直墙上,如图所示。(1)现施加外力将球A绕球心顺时针转过一个小角度,外力撤去后,球的运动情况如何?(2)墙面光滑,绳子变短时,绳的拉力和球对墙的压力将如何变化?
(1)因为墙是光滑的,绳子的作用力一定过球心。取球为研究对象,受力图如图所示。N为墙对球的力,方向水平向右;重力mg方向竖直向下;绳拉力T沿绳的方向,θ为绳与墙的夹角。因为小球静止,所以N、T、mg的合力为零,即T、N的合力F大小等于mg,方向竖直向上,T=mg/cosθ,N=mgtanθ。
当球A受到外力矩使其顺时针转动一个小角度后,重力mg和墙对球的支持力方向不变且均过球心,而绳对球A的作用力T不再过球心,且此力T对球A中心产生一使球A逆时针转动的效果,墙面光滑无摩擦力。所以外力撤去后,球A在力T对球A的作用下使球A绕球心逆时针转动。当球A转动到原平衡位置时,球A具有转动动能而继续转动,转动到一定角度后速度为零,而后球A向顺时针方向转动,再次转动到平衡位置时,球A仍具有转动动能而继续顺时针方向转动,转动为速度为零后又重复上述过程。
(2)研究变量的问题,我们要紧紧抓住被研究变量与不变量之间的关系,这是研究此类问题的一般思路和方法.由受力图可知:
T=mg/cosθ ①
N=mgtanθ ②
墙面光滑,当绳子变短时,θ角增大,式①中cosθ将变小,但其在分母上故整个分式变大,即T增大;式②中tanθ随θ变大而增大,故N也增大。
此题也可用图解法求解,因为T、N的合力F大小为mg,方向竖直向上,N的方向也已知总是垂直于墙(这些都是不变的量)。即已知合力和一个分力的方向求另一个分力。根据矢量合成的三角形法则,由图可知,当θ增大时,N变为N′,T变为T′,都将增大。
3.三力汇交原理:物体在三个互不平行的力的作用下处于平衡,则这三个力必为共点力。(表示这三个力的矢量首尾相接,恰能组成一个封闭三角形)
2.共点力的平衡条件:在共点力作用下物体的平衡条件是合力为零。
1.共点力:几个力作用于物体的同一点,或它们的作用线交于同一点(该点不一定在物体上),这几个力叫共点力。
4.需要合成或分解时,必须画出相应的平行四边形(或三角形)。
在解同一个问题时,分析了合力就不能再分析分力;分析了分力就不能再分析合力,不可重复。
[例10]如图所示,倾角为θ的斜面A固定在水平面上。木块B、C的质量分别为M、m,始终保持相对静止,共同沿斜面下滑。B的上表面保持水平,A、B间的动摩擦因数为μ。(1)当B、C共同匀速下滑;(2)当B、C共同加速下滑时,分别求B、C所受的各力。
解:(1)先分析C受的力。这时以C为研究对象,重力G1=mg,B对C的弹力竖直向上,大小N1= mg,由于C在水平方向没有加速度,所以B、C间无摩擦力,即f1=0。
再分析B受的力,在分析 B与A间的弹力N2和摩擦力f2时,以BC整体为对象较好,A对该整体的弹力和摩擦力就是A对B的弹力N2和摩擦力f2,得到B受4个力作用:重力G2=Mg,C对B的压力竖直向下,大小N1= mg,A对B的弹力N2=(M+m)gcosθ,A对B的摩擦力f2=(M+m)gsinθ
(2)由于B、C 共同加速下滑,加速度相同,所以先以B、C整体为对象求A对B的弹力N2、摩擦力f2,并求出a ;再以C为对象求B、C间的弹力、摩擦力。
这里,f2是滑动摩擦力N2=(M+m)gcosθ, f2=μN2=μ(M+m)gcosθ
沿斜面方向用牛顿第二定律:(M+m)gsinθ-μ(M+m)gcosθ=(M+m)a
可得a=g(sinθ-μcosθ)。B、C间的弹力N1、摩擦力f1则应以C为对象求得。
由于C所受合力沿斜面向下,而所受的3个力的方向都在水平或竖直方向。这种情况下,比较简便的方法是以水平、竖直方向建立直角坐标系,分解加速度a。
分别沿水平、竖直方向用牛顿第二定律:f1=macosθ,mg-N1= masinθ,
可得:f1=mg(sinθ-μcosθ) cosθ,N1= mg(cosθ+μsinθ)cosθ
由本题可以知道:①灵活地选取研究对象可以使问题简化;②灵活选定坐标系的方向也可以使计算简化;③在物体的受力图的旁边标出物体的速度、加速度的方向,有助于确定摩擦力方向,也有助于用牛顿第二定律建立方程时保证使合力方向和加速度方向相同。
[例11]小球质量为m,电荷为+q,以初速度v向右滑入水平绝缘杆,匀强磁场方向如图所示,球与杆间的动摩擦因数为μ。试描述小球在杆上的运动情况。
解:先分析小球的受力情况,再由受力情况确定其运动情况。
小球刚滑入杆时,所受场力为:重力mg方向向下,洛伦兹力Ff=qvB方向向上;再分析接触力:由于弹力FN的大小、方向取决于v和的大小关系,所以须分三种情况讨论:
① v>,在摩擦力作用下,v、Ff、FN、f都逐渐减小,当v减小到等于时达到平衡而做匀速运动;② v<,在摩擦力作用下,v、Ff逐渐减小,而FN、f逐渐增大,故v将一直减小到零;③ v=,Ff=G, FN、f均为零,小球保持匀速运动。
[例12]一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动。探测器通过喷气而获得推动力。以下关于喷气方向的描述中正确的是
A.探测器加速运动时,沿直线向后喷气 B.探测器加速运动时,竖直向下喷气
C.探测器匀速运动时,竖直向下喷气 D.探测器匀速运动时,不需要喷气
解:探测器沿直线加速运动时,所受合力F合方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,因此喷气方向斜向下方。匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。选C
3.只画性质力,不画效果力。
画受力示意图时,只能按力的性质分类画力,不能按作用效果(拉力、压力、向心力等)画力,否则将出现重复。
2.按顺序找力。
必须是先场力(重力、电场力、磁场力),后接触力;接触力中必须先弹力,后摩擦力(只有在有弹力的接触面之间才可能有摩擦力)。
1.明确研究对象。
在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体。在解决比较复杂的问题时,灵活地选取研究对象可以使问题简化。研究对象确定以后,只分析研究对象以外的物体施予研究对象的力(既研究对象所受的外力),而不分析研究对象施予外界的力。
4.二点补充
(1)已知合力,加上一定的条件求分力的各种情况
①已知合力、二分力的方向,求二分力的大小?
②已知合力、其中一分力F1的大小和方向,求另F2的大小和方向?
③已知合力、F1的大小、F2的方向,求F1的方向?F2的大小?
④已知合力、二分力的大小,求二分力的方向?
(2)滑轮问题
①滑轮本身的重力、摩擦一般不计。
②一根绳子上各点的力大小相等。
③滑轮的作用仅改变绳上拉力的方向。
④轴上的力等于二边绳子拉力的合力(不一定是大小之和)。
[例8]已知质量为m、电荷为q的小球,在匀强电场中由静止释放后沿直线OP向斜下方运动(OP和竖直方向成θ角),那么所加匀强电场的场强E的最小值是多少?
解:根据题意,释放后小球所受合力的方向必为OP方向。用三角形定则从右图中不难看出:重力矢量OG的大小方向确定后,合力F的方向确定(为OP方向),而电场力Eq的矢量起点必须在G点,终点必须在OP射线上。在图中画出一组可能的电场力,不难看出,只有当电场力方向与OP方向垂直时Eq才会最小,所以E也最小,有。
这是一道很典型的考察力的合成的题,不少同学只死记住“垂直”,而不分析哪两个矢量垂直,经常误认为电场力和重力垂直,而得出错误答案。越是简单的题越要认真作图。
[例9]轻绳AB总长l,用轻滑轮悬挂重G的物体。绳能承受的最大拉力是2G,将A端固定,将B端缓慢向右移动d而使绳不断,求d的最大值。
解:以与滑轮接触的那一小段绳子为研究对象,在任何一个平衡位置都在滑轮对它的压力(大小为G)和绳的拉力F1、F2共同作用下静止。而同一根绳子上的拉力大小F1、F2总是相等的,它们的合力N是压力G的平衡力,方向竖直向上。因此以F1、F2为分力做力的合成的平行四边形一定是菱形。利用菱形对角线互相垂直平分的性质,结合相似形知识可得,所以d最大为。
3.矢量的合成分解,一定要认真作图。在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线。各个矢量的大小和方向一定要画得合理。
在应用正交分解时,两个分矢量和合矢量的夹角一定要分清哪个是大锐角,哪个是小锐角,不可随意画成45°(当题目规定为45°时除外)。