7.(2008四川文) 若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于( )
(A) (B) (C) (D)
6.(2007海南、宁夏文、理)已知某个几何体的三视图如下,根据图
中标出的尺寸(单位:cm),可得这个几何体的体积是( )
A. B.
C. D.
5.(2007陕西文)Rt△ABC的三个顶点在半径为13的球面上,两直角边的长分别为6和8,
则球心到平面ABC的距离是( )
(A)5 (B)6 (C)10 (D)12
4.(2008湖北文、理)用与球心距离为1的平面去截球,
所得的截面面积为π,则球的休积为( )
A. B. C. D.
3.(2008山东文、理)右图是一个几何体的三视图 , 根据图中数据可得该几何体的表面积是( )
(A)9π (B)10π (C)11π (D) 12π
2.(2004春招北京文、理)一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为( )
1.(2008全国Ⅱ卷文)正四棱锥的侧棱长为,侧棱与底面所成的角为,则该棱锥的体积为( )
A.3 B.6 C.9 D.18
20.(2008山东理)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分. (Ⅰ)求随机变量ε分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
19. (2007天津理) 已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.
18.(2007山东理)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计). (Ⅰ)求方程有实根的概率; (Ⅱ)求的分布列和数学期望;
(Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.