所以

由事件的独立性的

解答2(Ⅰ)设事件A表示“一个月内被投诉2次”设事件B表示“一个月内被投诉的次数不超过1次”

所以

(Ⅱ)同解答1(Ⅱ)

29、(2009湖南卷理)(本小题满分12分)   

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.,现在3名工人独立地从中任选一个项目参与建设。      

(I)求他们选择的项目所属类别互不相同的概率;

(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求的分布列及数学期望。

解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件    ,,,i=1,2,3.由题意知相互独立,相互独立,相互独立,,,(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P()=,P()=,P()=

(1)他们选择的项目所属类别互不相同的概率

P=3!P()=6P()P()P()=6=

(2) 解法1  设3名工人中选择的项目属于民生工程的人数为,由己已知,-B(3,),且=3

所以P(=0)=P(=3)==,   

 P(=1)=P(=2)=  =       

P(=2)=P(=1)==

P(=3)=P(=0)=  =

的分布是


0
1
2
3
P




的数学期望E=0+1+2+3=2

解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件

i=1,2,3 ,由此已知,·D,相互独立,且

P()-()= P()+P()=+=    

所以--,既       

的分布列是



1
2
3





21、(2009山东卷理)(本小题满分12分)

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3

分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第

三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A

处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列

       
0     
2       
  3  
  4  
  5  
     p    
0.03     
  P1         
  P2      
P3     
P4       

(1)求q的值;   

(2)求随机变量的数学期望E;

(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

解 (1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,, P(B)= q,.

根据分布列知: =0时=0.03,所以

,q=0.8.

(2)当=2时, P1=    

=0.75 q( )×2=1.5 q( )=0.24

=3时, P2  ==0.01,

=4时, P3==0.48,

=5时, P4=

=0.24

所以随机变量的分布列为

       
0     
2       
  3  
  4  
  5  
  p    
0.03     
  0.24       
  0.01     
0.48    
0.24       

随机变量的数学期望

(3)该同学选择都在B处投篮得分超过3分的概率为

;

该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.

由此看来该同学选择都在B处投篮得分超过3分的概率大.

 0  320193  320201  320207  320211  320217  320219  320223  320229  320231  320237  320243  320247  320249  320253  320259  320261  320267  320271  320273  320277  320279  320283  320285  320287  320288  320289  320291  320292  320293  320295  320297  320301  320303  320307  320309  320313  320319  320321  320327  320331  320333  320337  320343  320349  320351  320357  320361  320363  320369  320373  320379  320387  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网