所以![]()
由事件的独立性的
![]()
解答2(Ⅰ)设事件A表示“一个月内被投诉2次”设事件B表示“一个月内被投诉的次数不超过1次”
所以![]()
(Ⅱ)同解答1(Ⅱ)
29、(2009湖南卷理)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.
、
、
,现在3名工人独立地从中任选一个项目参与建设。
(I)求他们选择的项目所属类别互不相同的概率;
(II)记
为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求
的分布列及数学期望。
解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件
,
,
,i=1,2,3.由题意知![]()
相互独立,![]()
相互独立,![]()
相互独立,
,
,
(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P(
)=,P(
)=
,P(
)=![]()
(1)他们选择的项目所属类别互不相同的概率
P=3!P(![]()
![]()
)=6P(
)P(
)P(
)=6![]()
![]()
![]()
![]()
![]()
=![]()
(2) 解法1 设3名工人中选择的项目属于民生工程的人数为
,由己已知,
-B(3,
),且
=3
。
所以P(
=0)=P(
=3)=![]()
=
,
P(
=1)=P(
=2)= ![]()
=
P(
=2)=P(
=1)=![]()
![]()
=![]()
P(
=3)=P(
=0)=
=
![]()
故
的分布是
|
|
0 |
1 |
2 |
3 |
|
P |
|
|
|
|
的数学期望E
=0![]()
+1![]()
+2![]()
+3![]()
=2
解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件
,
i=1,2,3 ,由此已知,
·D,
相互独立,且
P(
)-(
,
)= P(
)+P(
)=
+
=
所以
--
,既
,
故
的分布列是
|
|
|
1 |
2 |
3 |
|
|
|
|
|
|
22、(2009安徽卷理)(本小题满分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是
.同样也假定D受A、B和C感染的概率都是
.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).
本小题主要考查古典概型及其概率计算,考查取有限个值的离散型随机变量及其分布列和均值的概念,通过设置密切贴近现实生活的情境,考查概率思想的应用意识和创新意识。体现数学的科学价值。本小题满分12分。
解 随机变量X的分布列是
|
X |
1 |
2 |
3 |
|
P |
|
|
|
X的均值为![]()
附:X的分布列的一种求法
共有如下6种不同的可能情形,每种情形发生的概率都是
:
|
① |
② |
③ |
④ |
⑤ |
⑥ |
|
A-B-C-D |
A-B-C └D |
A-B-C └D |
A-B-D └C |
A-C-D └B |
|
在情形①和②之下,A直接感染了一个人;在情形③、④、⑤之下,A直接感染了两个人;在情形⑥之下,A直接感染了三个人。
21、(2009山东卷理)(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3
分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第
三次,某同学在A处的命中率q
为0.25,在B处的命中率为q
,该同学选择先在A
处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列
为
|
|
0
|
2
|
3 |
4 |
5 |
|
|
0.03
|
P1
|
P2 |
P3
|
P4
|
(1)求q
的值;
![]()
(2)求随机变量
的数学期望E
;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
解 (1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,
,
P(B)= q
,
.
根据分布列知:
=0时
=0.03,所以
,q
=0.8.
(2)当
=2时, P1=
![]()
=0.75 q
(
)×2=1.5 q
(
)=0.24
当
=3时, P2 =
=0.01,
当
=4时, P3=
=0.48,
当
=5时, P4=![]()
=0.24
所以随机变量
的分布列为
|
|
0
|
2
|
3 |
4 |
5 |
|
p
|
0.03
|
0.24
|
0.01 |
0.48
|
0.24
|
随机变量
的数学期望![]()
(3)该同学选择都在B处投篮得分超过3分的概率为![]()
![]()
;
该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.
由此看来该同学选择都在B处投篮得分超过3分的概率大.