摘要: 在某校组织的一次篮球定点投篮训练中.规定每人最多投3次,在A处每投进一球得3 分.在B处每投进一球得2分,如果前两次得分之和超过3分即停止投篮.否则投第 三次.某同学在A处的命中率q为0.25.在B处的命中率为q.该同学选择先在A 处投一球.以后都在B处投.用表示该同学投篮训练结束后所得的总分.其分布列 为 0 2 3 4 5 p 0.03 P1 P2 P3 P4 (1)求q的值, (2)求随机变量的数学期望E; (3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小. 解 (1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,, P(B)= q,. 根据分布列知: =0时=0.03,所以 .q=0.8. (2)当=2时, P1= =0.75 q( )×2=1.5 q( )=0.24 当=3时, P2 ==0.01, 当=4时, P3==0.48, 当=5时, P4= =0.24 所以随机变量的分布列为 0 2 3 4 5 p 0.03 0.24 0.01 0.48 0.24 随机变量的数学期望 (3)该同学选择都在B处投篮得分超过3分的概率为 ; 该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72. 由此看来该同学选择都在B处投篮得分超过3分的概率大.
网址:http://m.1010jiajiao.com/timu_id_3202902[举报]
(2009山东卷理)(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q
为0.25,在B处的命中率为q
,该同学选择先在A处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
| 0 | 2 | 3 | 4 | 5 |
| 0.03 | P1 | P2 | P3 | P4 |
(1) 求q
的值;
![]()
(2) 求随机变量
的数学期望E
;
(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
查看习题详情和答案>>