网址:http://m.1010jiajiao.com/timu_id_489641[举报]
一、选择题:
CADCB AABBD CD
二、填空题
(13)
; (14)8; (15)
; (16)3.
三、解答题
(17)解:将圆C的方程
配方得标准方程为
,
则此圆的圆心为(0 , 4),半径为2.
(Ⅰ) 若直线
与圆C相切,则有
. 解得
. ………………6分
(Ⅱ) 解:过圆心C作CD⊥AB,则根据题意和圆的性质,得
解得
.
∴直线
的方程是
和
. ………………12分
(18)解:(Ⅰ)由题意知此平面区域表示的是以
构成的三角形及其内部,且△
是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是
,
所以圆
的方程是
. ………………6分
(Ⅱ)设直线
的方程是:
.
因为
,所以圆心
到直线
的距离是
, 即
.
解得:
. ………………………………11分
所以直线
的方程是
. ………………12分
(19)解:设过点T(3,0)的直线
交抛物线
于点A
、B
.
(Ⅰ)当直线
的钭率不存在时,直线
的方程为
,
此时, 直线
与抛物线相交于点A(3,
)().B(3,-
),∴
=3. …….............4分
(Ⅱ)当直线
的钭率存在时,设直线
的方程为
,
其中
,由
得
.
…………………….….6分
又 ∵
, ∴
,
………………………………….10分
综上所述,命题“若直线
过点T(3,0),则
=3” 是真命题. ………………….12分
(20)解:(Ⅰ)由
知
是
的中点,
设A、B两点的坐标分别为解析几何测试题(文科).files/image330.gif)
由
.
,
∴
点的坐标为
.
…………………………4分
又
点在直线
上,
.
,
………………6分
(Ⅱ)由(Ⅰ)知
,不妨设椭圆的一个焦点坐标为
,
设
关于直线解析几何测试题(文科).files/image144.gif)
上的对称点为
,
则有
. ………………10分
由已知
.
,∴所求的椭圆的方程为
. ………………12分
(21)解:(Ⅰ)由已知条件,直线
的方程为
,
代入椭圆方程得
.
整理得
① ……………………………………3分
直线
与椭圆有两个不同的交点
和
等价于
,
解得
或
.即
的取值范围为
.………………6分
(Ⅱ)设
,则
,
由方程①,
. ②
又
. ③ …………………………………9分
而
.
所以
与
共线等价于
,
将②③代入上式,解得
.
由(Ⅰ)知
或
,故没有符合题意的常数
.………………12分
(22)解:(Ⅰ)设点
,则
,由
得:
,化简得
.……4分
(Ⅱ)(1)设直线
的方程为:
.
设
,
,又解析几何测试题(文科).files/image419.gif)
联立方程组
,消去
得:
,
,
……………………………………………7分
由
,
得:
,
,整理得:
,
,
解析几何测试题(文科).files/image440.gif)
解析几何测试题(文科).files/image442.gif)
解析几何测试题(文科).files/image444.gif)
.……10分
(2)解: 解析几何测试题(文科).files/image448.gif)
解析几何测试题(文科).files/image450.gif)
解析几何测试题(文科).files/image452.gif)
解析几何测试题(文科).files/image454.gif)
.
当且仅当
,即
时等号成立,所以
最小值为
. ……14分
| 3 |
| 3 |
(Ⅰ)求曲线C的方程;
(Ⅱ)M是曲线C上一点,过点M作斜率分别为k1和k2的直线MA,MB交曲线C于A、B两点,若A、B关于原点对称,求k1•k2的值;
(Ⅲ)直线l过点F2,且与曲线C交于PQ,有如下命题p:“当直线l垂直于x轴时,△F1PQ的面积取得最大值”.判断命题p的真假.若是真命题,请给予证明;若是假命题,请说明理由.
(1)选修4-2:矩阵与变换
如图所示:△OAB在伸缩变换M作用下变为△OA1B1.
(i)求矩阵M的特征值及相应的特征向量;
(ii)求逆矩阵M-1以及(M-1)20
(2)选修4-4:坐标系与参数方程.
已知曲线C1的参数方程为
|
|
(i)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1和C2,求出曲线C1和C2的普通方程;
(ii)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
| b 2 |
| 4 |
| c 2 |
| 9 |
(i)求证:a2+
| b 2 |
| 4 |
| c 2 |
| 9 |
| (a+b+c) 2 |
| 14 |
(ii)求实数m的取值范围. 查看习题详情和答案>>
(x-
|
(x+
|
(1)点M的轨迹是什么曲线?请写出它的标准方程;
(2)已知定点T(t,0)(0<t<3),若|MT|的最小值为1,求t的值;
(3)设直线l不经过原点O,与动点M的轨迹相交于A,B两点,点G为线段AB的中点,直线OG与该轨迹相交于C,D两点,若直线AB,CD,AC,AD,DB,BC的斜率分别为k1,k2,k3,k4,k5,k6,求证:k1•k2=k3•k4=k5•k6.