网址:http://m.1010jiajiao.com/timu_id_489596[举报]
一、选择题:
CADDB ADBBA CD
二、填空题
(13); (14)8; (15); (16).
三、解答题
(17)解:将圆C的方程配方得标准方程为,
则此圆的圆心为(0 , 4),半径为2.
(Ⅰ) 若直线与圆C相切,则有. 解得. ………………6分
(Ⅱ) 解:过圆心C作CD⊥AB,则根据题意和圆的性质,得
解得.
∴直线的方程是和. ………………12分
(18)解:(Ⅰ)由题意知此平面区域表示的是以构成的三角形及其内部,且△是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是,
所以圆的方程是. ………………6分
(Ⅱ)设直线的方程是:.
因为,所以圆心到直线的距离是, 即.
解得:. ………………………………11分
所以直线的方程是. ………………12分
(19)解:设过点T(3,0)的直线交抛物线于点A、B .
(Ⅰ)当直线的钭率不存在时,直线的方程为,
此时, 直线与抛物线相交于点A(3,)().B(3,-),∴=3. …….............4分
(Ⅱ)当直线的钭率存在时,设直线的方程为,
其中,由得 . …………………….….6分
又 ∵ , ∴,
………………………………….10分
综上所述,命题“若直线过点T(3,0),则=3” 是真命题. ………………….12分
(20)解:(Ⅰ)由知是的中点,
设A、B两点的坐标分别为
由.
,
∴点的坐标为. …………………………4分
又点在直线上, .
, ………………6分
(Ⅱ)由(Ⅰ)知,不妨设椭圆的一个焦点坐标为,
设关于直线上的对称点为,
则有. ………………10分
由已知.
,∴所求的椭圆的方程为 . ………………12分
(21)解:(Ⅰ)
,即;
,即.
. ……………………………………………4分
(Ⅱ)设直线的方程为,
直线与双曲线交于,不妨设且,
直线与双曲线交于.
由得.
令得,此式恒成立.
,. ………………6分
而=.
∴直线与双曲线交于两支上的两点;
同理直线与双曲线交于两支上的两点,
则 ……………………8分
=
= . ……………………10分
令 则 在(1,2)递增.
又,
. ………………………………………12分
(22)解:(Ⅰ)直线的法向量, 的方程:,
即为. ………………………2分
直线的法向量,的方程为,
即为. ………………………4分
(Ⅱ). ………………………6分
设点的坐标为,由,得.…………8分
由椭圆的定义的知,存在两个定点使得恒为定值4,此时两个定点为椭圆的两个焦点. ………………………10分
(Ⅲ)设,,则,,
由,得. ………………………12分
;
当且仅当或时,取最小值.
,故与平行.
………………………14分
3 |
3 |
(Ⅰ)求曲线C的方程;
(Ⅱ)M是曲线C上一点,过点M作斜率分别为k1和k2的直线MA,MB交曲线C于A、B两点,若A、B关于原点对称,求k1•k2的值;
(Ⅲ)直线l过点F2,且与曲线C交于PQ,有如下命题p:“当直线l垂直于x轴时,△F1PQ的面积取得最大值”.判断命题p的真假.若是真命题,请给予证明;若是假命题,请说明理由.
(1)选修4-2:矩阵与变换
如图所示:△OAB在伸缩变换M作用下变为△OA1B1.
(i)求矩阵M的特征值及相应的特征向量;
(ii)求逆矩阵M-1以及(M-1)20
(2)选修4-4:坐标系与参数方程.
已知曲线C1的参数方程为
|
|
(i)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1和C2,求出曲线C1和C2的普通方程;
(ii)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
b 2 |
4 |
c 2 |
9 |
(i)求证:a2+
b 2 |
4 |
c 2 |
9 |
(a+b+c) 2 |
14 |
(ii)求实数m的取值范围. 查看习题详情和答案>>
(x-
|
(x+
|
(1)点M的轨迹是什么曲线?请写出它的标准方程;
(2)已知定点T(t,0)(0<t<3),若|MT|的最小值为1,求t的值;
(3)设直线l不经过原点O,与动点M的轨迹相交于A,B两点,点G为线段AB的中点,直线OG与该轨迹相交于C,D两点,若直线AB,CD,AC,AD,DB,BC的斜率分别为k1,k2,k3,k4,k5,k6,求证:k1•k2=k3•k4=k5•k6.