摘要:解:(Ⅰ)设圆的方程为: ----------1分
网址:http://m.1010jiajiao.com/timu_id_278072[举报]
(1)若椭圆的方程是:
+
=1(a>b>0),它的左、右焦点依次为F1、F2,P是椭圆上异于长轴端点的任意一点.在此条件下我们可以提出这样一个问题:“设△PF1F2的过P角的外角平分线为l,自焦点F2引l的垂线,垂足为Q,试求Q点的轨迹方程?”
对该问题某同学给出了一个正确的求解,但部分解答过程因作业本受潮模糊了,我们在
这些模糊地方划了线,请你将它补充完整.
解:延长F2Q 交F1P的延长线于E,据题意,
E与F2关于l对称,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|= ,
在△EF1F2中,显然OQ是平行于EF1的中位线,
所以|OQ|=
|EF1|= ,
注意到P是椭圆上异于长轴端点的点,所以Q点的轨迹是 ,
其方程是: .
(2)如图2,双曲线的方程是:
-
=1(a,b>0),它的左、右焦点依次为F1、F2,P是双曲线上异于实轴端点的任意一点.请你试着提出与(1)类似的问题,并加以证明.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
对该问题某同学给出了一个正确的求解,但部分解答过程因作业本受潮模糊了,我们在
这些模糊地方划了线,请你将它补充完整.
解:延长F2Q 交F1P的延长线于E,据题意,
E与F2关于l对称,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
在△EF1F2中,显然OQ是平行于EF1的中位线,
所以|OQ|=
1 |
2 |
注意到P是椭圆上异于长轴端点的点,所以Q点的轨迹是
其方程是:
(2)如图2,双曲线的方程是:
x2 |
a2 |
y2 |
b2 |
已知椭圆C1的方程为
+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
与双曲线C2恒有两个不同的交点A和B,且
•
>2(其中O为原点),求k的范围.
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).
查看习题详情和答案>>
x2 |
4 |
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2 |
OA |
OB |
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).
已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求k的范围.
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).
查看习题详情和答案>>
(1)求双曲线C2的方程;
(2)若直线与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求k的范围.
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).
查看习题详情和答案>>