ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C1µÄ·½³ÌΪ
+y2=1£¬Ë«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ¶¥µã£¬¶øC2µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+
ÓëË«ÇúÏßC2ºãÓÐÁ½¸ö²»Í¬µÄ½»µãAºÍB£¬ÇÒ
•
£¾2£¨ÆäÖÐOΪԵ㣩£¬ÇókµÄ·¶Î§£®
£¨3£©ÊÔ¸ù¾Ý¹ì¼£C2ºÍÖ±Ïßl£¬Éè¼ÆÒ»¸öÓëxÖáÉÏijµãÓйصÄÈý½ÇÐÎÐÎ×´ÎÊÌ⣬²¢ÓèÒÔ½â´ð£¨±¾Ì⽫¸ù¾ÝËùÉè¼ÆµÄÎÊÌâ˼ά²ã´ÎÆÀ·Ö£©£®
x2 |
4 |
£¨1£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+
2 |
OA |
OB |
£¨3£©ÊÔ¸ù¾Ý¹ì¼£C2ºÍÖ±Ïßl£¬Éè¼ÆÒ»¸öÓëxÖáÉÏijµãÓйصÄÈý½ÇÐÎÐÎ×´ÎÊÌ⣬²¢ÓèÒÔ½â´ð£¨±¾Ì⽫¸ù¾ÝËùÉè¼ÆµÄÎÊÌâ˼ά²ã´ÎÆÀ·Ö£©£®
·ÖÎö£º£¨1£©ÉèË«ÇúÏßC2µÄ·½³ÌΪ
-
=1£¬Ôòa2=4-1=3£¬ÔÙÓÉa2+b2=c2µÃb2=1£¬ÓÉ´ËÄÜÇó³ö¹ÊC2µÄ·½³Ì£®
£¨2£©½«y=kx+
´úÈë
-y2=1µÃ(1-3k2)x2-6
kx-9=0£®ÓÉÖ±ÏßlÓëË«ÇúÏßC2½»ÓÚ²»Í¬µÄÁ½µãµÃ£º
£¬ÓÉ´ËÄÜÇó³ökµÄÈ¡Öµ·¶Î§£®
£¨3£©ÈôxÖáÉÏ´æÔÚµãP£¨m£¬0£©£¬Ê¹¡÷APBÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÇómµÄÈ¡Öµ·¶Î§£®
µ±k=0ʱ£¬Pµã×ø±êΪ£¨0£¬0£©£¬¼´m=0£»µ±k¡Ù0ʱ£¬ÉèÏ߶ÎABµÄÖеãM£¨x0£¬y0£©£¬Ï߶ÎABµÄÖд¹Ïß·½³ÌΪy-
=-
(x-
)£¬Áîy=0£¬µÃm=
=
£¬ÓÉ´ËÄÜÇó³ömµÄ·¶Î§£®
x2 |
a2 |
y2 |
b2 |
£¨2£©½«y=kx+
2 |
x2 |
3 |
2 |
|
£¨3£©ÈôxÖáÉÏ´æÔÚµãP£¨m£¬0£©£¬Ê¹¡÷APBÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÇómµÄÈ¡Öµ·¶Î§£®
µ±k=0ʱ£¬Pµã×ø±êΪ£¨0£¬0£©£¬¼´m=0£»µ±k¡Ù0ʱ£¬ÉèÏ߶ÎABµÄÖеãM£¨x0£¬y0£©£¬Ï߶ÎABµÄÖд¹Ïß·½³ÌΪy-
| ||
1-3k2 |
1 |
k |
3
| ||
1-3k2 |
4
| ||
1-3k2 |
4
| ||
|
½â´ð£º½â£º£¨1£©ÉèË«ÇúÏßC2µÄ·½³ÌΪ
-
=1£¬
Ôòa2=4-1=3£¬ÔÙÓÉa2+b2=c2µÃb2=1£¬¹ÊC2µÄ·½³ÌΪ
-y2=1
£¨2£©½«y=kx+
´úÈë
-y2=1µÃ(1-3k2)x2-6
kx-9=0
ÓÉÖ±ÏßlÓëË«ÇúÏßC2½»ÓÚ²»Í¬µÄÁ½µãµÃ£º
¡àk2¡Ù
ÇÒk2£¼1¡¢ÙA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
£¬x1x2=
¡àx1x2+y1y2=x1x2+(kx1+
)(kx2+
)=(k2+1)x1x2+
k(x1+x2)+2=
ÓÖ¡ß
•
£¾2£¬µÃx1x2+y1y2£¾2£¬¡à
£¾2
¼´
£¾0£¬½âµÃ£º
£¼k2£¼3£¬¡¢Ú£¬¹ÊkµÄÈ¡Öµ·¶Î§Îª(-1£¬-
)¡È(
£¬1)£®
£¨3£©ÈôxÖáÉÏ´æÔÚµãP£¨m£¬0£©£¬Ê¹¡÷APBÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÇómµÄÈ¡Öµ·¶Î§£®
½â£ºÏÔÈ»£¬µ±k=0ʱ£¬Pµã×ø±êΪ£¨0£¬0£©£¬¼´m=0£»
µ±k¡Ù0ʱ£¬ÉèÏ߶ÎABµÄÖеãM£¨x0£¬y0£©£¬
ÓÉ£¨2£©Öªx0=
=
£¬y0=
+
=
ÓÚÊÇ£¬Ï߶ÎABµÄÖд¹Ïß·½³ÌΪy-
=-
(x-
)£¬Áîy=0£¬µÃm=
=
£¬ÓÉ¢ÙÖª£¬k¡Ê(-1£¬-
)¡È(-
£¬0)¡È(0£¬
)¡È(
£¬1)
¡à
-3k¡ÊR£¬¡àm¡ÊR£¬ÇÒm¡Ù0£®
×ÛÉÏËùÊö£¬m¡ÊR£®
x2 |
a2 |
y2 |
b2 |
Ôòa2=4-1=3£¬ÔÙÓÉa2+b2=c2µÃb2=1£¬¹ÊC2µÄ·½³ÌΪ
x2 |
3 |
£¨2£©½«y=kx+
2 |
x2 |
3 |
2 |
ÓÉÖ±ÏßlÓëË«ÇúÏßC2½»ÓÚ²»Í¬µÄÁ½µãµÃ£º
|
1 |
3 |
6
| ||
1-3k2 |
-9 |
1-3k2 |
2 |
2 |
2 |
3k2+7 |
3k2-1 |
ÓÖ¡ß
OA |
OB |
3k2+7 |
3k2-1 |
¼´
-3k2+9 |
3k2-1 |
1 |
3 |
| ||
3 |
| ||
3 |
£¨3£©ÈôxÖáÉÏ´æÔÚµãP£¨m£¬0£©£¬Ê¹¡÷APBÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÇómµÄÈ¡Öµ·¶Î§£®
½â£ºÏÔÈ»£¬µ±k=0ʱ£¬Pµã×ø±êΪ£¨0£¬0£©£¬¼´m=0£»
µ±k¡Ù0ʱ£¬ÉèÏ߶ÎABµÄÖеãM£¨x0£¬y0£©£¬
ÓÉ£¨2£©Öªx0=
x1+x2 |
2 |
3
| ||
1-3k2 |
3
| ||
1-3k2 |
2 |
| ||
1-3k2 |
ÓÚÊÇ£¬Ï߶ÎABµÄÖд¹Ïß·½³ÌΪy-
| ||
1-3k2 |
1 |
k |
3
| ||
1-3k2 |
4
| ||
1-3k2 |
4
| ||
|
| ||
3 |
| ||
3 |
| ||
3 |
| ||
3 |
¡à
1 |
k |
×ÛÉÏËùÊö£¬m¡ÊR£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éË«ÇúÏß±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëË«ÇúÏßµÄλÖùØϵ£¬Ë«ÇúÏߵļòµ¥ÐÔÖʵȻù´¡ÖªÊ¶£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿