摘要:21.已知 (1), 求的最小值 对称.若点P在曲线C上移动时.点Q的轨迹是函数的图象.求曲线C的轨迹方程. (3)在中学数学中.从特殊到一般.从具体到抽象是常见的一种思维形式.如从可抽象出的性质.试分别写出一个具体的函数.抽象出下列相应的性质 由 可抽象出 由 可抽象出
网址:http://m.1010jiajiao.com/timu3_id_516938[举报]
(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒
个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?
查看习题详情和答案>>
(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒
个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?
(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒
个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒
已知函数f(x)=x3+ax2+bx+c.
(Ⅰ)若a=-
,b=-6,c=1,求f(x)在[-2,4]上的最大值与最小值;
(Ⅱ)设函数f(x)的图象关于原点O对称,在点P(x0,f(x0))处的切线为l,l与函数f(x)的图象交于另一点Q(x1,y1).若P、Q在x轴上的射影分别为P1、Q1,
=λ
,求λ的值.
查看习题详情和答案>>
(Ⅰ)若a=-
| 3 |
| 2 |
(Ⅱ)设函数f(x)的图象关于原点O对称,在点P(x0,f(x0))处的切线为l,l与函数f(x)的图象交于另一点Q(x1,y1).若P、Q在x轴上的射影分别为P1、Q1,
| OQ1 |
| OP1 |
已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
,求侧棱长”;也可以是“若正四棱锥的体积为
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
,0)的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.
查看习题详情和答案>>
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
| 16 |
| 3 |
| 16 |
| 3 |
| 16 |
| 3 |
现有正确命题:过点A(-
| p |
| 2 |
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.