题目内容

15.一质点在t=0时刻从坐标原点出发,沿x轴正方向做初速度为零,加速度大小为a1的匀加速直线运动,t=ls时到达x=5m的位置,速度大小为v1,此时加速度立即反向,加速度大小变为a2,t=3s时质点恰好回到原点,速度大小为v2,则(  )
A.a2=3a1
B.v2=3v1
C.质点向x轴正方向运动的时间为2s
D.质点向x轴正方向运动最远到x=9m的位置

分析 根据位移与平均速度的关系,以及速度公式,即可求出加速度的大小关系以及两个速度之间的关系.

解答 解:A、B、设第一段时间为t1,第二段时间为t2,1s末的速度为v1,最后的速度为v2,则:
$x=\frac{1}{2}{a}_{1}{t}_{1}^{2}$
代入数据得:a1=10m/s2
v1=a1t1,v2=a2t2-a1t1
由题意:$x=\frac{{v}_{1}}{2}•{t}_{1}=\frac{{v}_{2}-{v}_{1}}{2}•{t}_{2}$
联立得:${a}_{2}=12.5m/{s}^{2}$,v1=10m/s,v2=15m/s
即:${a}_{2}=\frac{5}{4}{a}_{1}$,${v}_{2}=\frac{3}{2}{v}_{1}$.故A错误,B错误;
C、质点向x轴正方向减速的时间为:${t}_{3}=\frac{{v}_{1}}{{a}_{2}}=\frac{10}{12.5}=0.8$s,所以质点向x轴正方向运动的时间为:t=t1+t3=1+0.8=1.8s.故C错误;
D、质点向x轴正方向运动最远的位置:${x}_{m}=\frac{{v}_{1}}{2}({t}_{1}+{t}_{3})=\frac{10}{2}×(1+0.8)=9$m.故D正确.
故选:D

点评 本题主要考查了匀变速直线运动位移时间公式及速度时间公式的直接应用,难度不大,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网