ÌâÄ¿ÄÚÈÝ
2£®Ò»Íæ¾ßÖ±Éý·É»ú£¬´ÓµØÃæÊúÖ±Æð·É£¬Òª½µÂäµ½¾àÀëµØÃæ¸ßL=46mµÄƽ̨ÉÏ£®¸ÃÖ±Éý·É»ú´Ó¾²Ö¹¿ªÊ¼Æð·É£¬ÒÔa1=2m/s2µÄ¼ÓËٶȼÓËÙÉÏÉý£¬µ±ÉÏÉýµ½L1=4mʱ£¬·É»úÁ¢¼´¸ÄΪÒÔa2=1m/s2µÄ¼ÓËÙ¶ÈÉÏÉý£¬µ±ÔÙÉÏÉýL2=10mʱ£¬·É»úʧȥ¶¯Á¦Á¢¼´ÒÔa3=8m/s2¡¢·½ÏòÏòϵļÓËÙ¶ÈÔ˶¯£¬Ó־ʱ¼ä¡÷t=1s»Ö¸´¶¯Á¦£¬·É»úÔÙÒÔa2=1m/s2µÄ¼ÓËÙ¶ÈÉÏÉý£¬Çó·É»úÐèÒª¶à³¤Ê±¼ä²Å¿ÉÒÔ·ÉÉÏƽ̨ËùÔÚµÄλÖã®·ÖÎö ¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶ÈλÒƹ«Ê½·Ö±ðÇó³öÉÏÉý4mʱ£¬ÔÙÉÏÉý10mʱµÄËٶȣ¬Çó³öÁ½¶Î¹ý³ÌÖеÄʱ¼ä£¬¸ù¾ÝλÒÆʱ¼ä¹«Ê½Çó³ö»Ö¸´¶¯Á¦Õâ¶Îʱ¼äÄÚµÄλÒÆ£¬´Ó¶øµÃ³ö×îºóÒ»¶Î¹ý³ÌÖеÄλÒÆ£¬½áºÏλÒÆʱ¼ä¹«Ê½Çó³ö×îºóÒ»¶Î¹ý³ÌÖеÄʱ¼ä£¬´Ó¶øµÃ³ö×Üʱ¼ä£®
½â´ð ½â£ºµ±·É»úÉÏÉýµ½L1=4mʱ£¬ËÙ¶ÈΪ£º${v}_{1}=\sqrt{2{a}_{1}{L}_{1}}$=$\sqrt{2¡Á2¡Á4}$m/s=4m/s£¬
¾ÀúµÄʱ¼äΪ£º${t}_{1}=\frac{{v}_{1}}{{a}_{1}}=\frac{4}{2}s=2s$£¬
ÔÙÉÏÉýL2=10mʱ£¬ËÙ¶ÈΪ£º${v}_{2}=\sqrt{{{v}_{1}}^{2}+2{a}_{2}{L}_{2}}$=$\sqrt{16+2¡Á1¡Á10}m/s=6m/s$£¬
¾ÀúµÄʱ¼äΪ£º${t}_{2}=\frac{{v}_{2}-{v}_{1}}{{a}_{2}}=\frac{6-4}{1}s=2s$£¬
ʧȥ¶¯Á¦ºó£¬¾Àú¡÷tʱ¼äÄÚµÄλÒÆΪ£º${L}_{3}={v}_{2}¡÷t-\frac{1}{2}{a}_{3}¡÷{t}^{2}$=$6¡Á1-\frac{1}{2}¡Á8¡Á1m$=2m£¬
ËÙ¶ÈΪ£ºv3=v2-a3¡÷t=6-8¡Á1m/s=-2m/s£¬
×îºóÒ»¶ÎµÄλÒÆΪ£ºL4=L-L1-L2-L3=46-4-10-2m=30m£¬
¸ù¾Ý${L}_{4}={v}_{3}{t}_{4}+\frac{1}{2}{a}_{2}{{t}_{4}}^{2}$
µÃ£º$30=-2{t}_{4}+\frac{1}{2}¡Á1¡Á{{t}_{4}}^{2}$£¬
½âµÃt4=10s£®
Ôòt=t1+t2+¡÷t+t4s=2+2+1+10s=15s£®
´ð£º·É»úÐèÒª15sʱ¼ä²Å¿ÉÒÔ·ÉÉÏƽ̨ËùÔÚµÄλÖã®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇå·É»úÔÚÕû¸ö¹ý³ÌÖеÄÔ˶¯¹æÂÉ£¬½áºÏÔ˶¯Ñ§µÄËÙ¶Èʱ¼ä¹«Ê½¡¢Î»ÒÆʱ¼ä¹«Ê½¡¢ËÙ¶ÈλÒƹ«Ê½Áé»îÇó½â£®
A£® | F1Ôö´ó£¬F2Ôö´ó | B£® | F1²»±ä£¬F2Ôö´ó | C£® | F1²»±ä£¬F2¼õС | D£® | F1²»±ä£¬F2²»±ä |
A£® | µ±Ñо¿»¤º½½¢Í§µÄÔËÐй켣ʱ£¬²»Äܽ«Æä¿´×öÖʵã | |
B£® | ¡°5ǧ¶àº£ÀָµÄÊÇ»¤º½½¢Í§µÄº½ÐÐλÒÆ | |
C£® | ¡°5ǧ¶àº£ÀָµÄÊÇ»¤º½½¢Í§µÄº½Ðз³Ì | |
D£® | ¸ù¾ÝÌâÖÐÊý¾ÝÎÒÃÇ¿ÉÒÔÇóµÃ´Ë´Îº½ÐеÄƽ¾ùËÙ¶È |
A£® | ÔÚt1ʱ¿Ì£¬a¡¢bÁ½³µÏàÓö | |
B£® | ÔÚt2ʱ¿Ì£¬a¡¢bÁ½³µÔ˶¯·½ÏòÏàͬ | |
C£® | ÔÚt1µ½t2Õâ¶Îʱ¼äÄÚ£¬b³µµÄËÙÂÊÏȼõСºóÔö´ó | |
D£® | ÔÚt1µ½t2Õâ¶Îʱ¼äÄÚ£¬b³µµÄËÙÂÊÒ»Ö±±Èa³µµÄ´ó |