ÌâÄ¿ÄÚÈÝ
9£®ÈçͼËùʾ£¬ÈËÔìÎÀÐÇA¡¢BÔÚͬһƽÃæÄÚÈƵØÐÄO×öͬÏòµÄÔÈËÙÔ²ÖÜÔ˶¯£®A¡¢BÁ¬ÏßÓëA¡¢OÁ¬Ïß¼äµÄ¼Ð½Ç¦ÈËæʱ¼ä·¢Éú±ä»¯£¬ÇÒ×î´óֵΪ¦È0£¬ÎÀÐÇB×öÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT£¬Ôò´ÓBÏòA¿¿½ü¹ý³ÌÖЦȳöÏÖ×î´óÖµ¿ªÊ¼¼Æʱ£¬µ½BÔ¶ÀëA¹ý³ÌÖЦȳöÏÖ×î´óÖµ½áÊø¼ÆʱËùÓõÄʱ¼äΪ£¨¡¡¡¡£©A£® | $\frac{£¨¦Ð-{¦È}_{0}£©T}{¦Ð£¨1-\sqrt{si{n}^{3}{¦È}_{0}}£©}$ | B£® | $\frac{£¨¦Ð-2{¦È}_{0}£©T}{2¦Ð£¨1-\sqrt{si{n}^{3}{¦È}_{0}}£©}$ | ||
C£® | $\frac{£¨2¦Ð-{¦È}_{0}£©T}{2¦Ð£¨1-\sqrt{si{n}^{3}{¦È}_{0}}£©}$ | D£® | $\frac{£¨2¦Ð-{¦È}_{0}£©T}{¦Ð£¨1-\sqrt{si{n}^{3}{¦È}_{0}}£©}$ |
·ÖÎö ÎÀÐÇÈƵØÇò×öÔ²ÖÜÔ˶¯£¬¸ù¾ÝÌâÒâÇó³öÁ½ÎÀÐǵĹìµÀ°ë¾¶¹Øϵ£¬È»ºóÓ¦ÓÿªÆÕÀÕµÚÈý¶¨ÂÉÇó³öÁ½ÎÀÐǵÄÖÜÆÚ¹Øϵ£»Çó³öÎÀÐÇת¹ýµÄÔ²ÐĽǣ¬È»ºóÇó³öÎÀÐǵÄÔ˶¯Ê±¼ä£®
½â´ð ½â£ºµ±ABµÄÁ¬ÏßÓëBÎÀÐǹìµÀÏàÇÐʱ£¬A¡¢BÁ¬ÏßÓëA¡¢OÁ¬Ïß¼äµÄ¼Ð½Ç×î´ó£¬Óɼ¸ºÎ֪ʶ¿ÉµÃ£ºRB=RAsin¦È0£¬
ÓÉ¿ªÆÕÀÕµÚÈý¶¨Âɵãº$\frac{{R}_{A}^{3}}{{T}_{A}^{2}}$=$\frac{{R}_{B}^{3}}{{T}_{B}^{2}}$£¬¼´£º$\frac{{R}_{A}^{3}}{{T}_{A}^{2}}$=$\frac{£¨{R}_{A}^{\;}sin{¦È}_{0}£©^{3}}{{T}^{2}}$£¬½âµÃ£ºTA=$\frac{T}{\sqrt{si{n}^{3}{¦È}_{0}}}$£¬
´ÓBÏòA¿¿½ü¹ý³ÌÖЦȳöÏÖ×î´óÖµ¿ªÊ¼¼Æʱµ½BÔ¶ÀëA¹ý³ÌÖЦȳöÏÖ×î´óÖµ½áÊø¹ý³ÌÖУ¬
ÎÀÐÇת¹ýµÄÔ²ÐĽǣº¦Õ=2£¨$\frac{¦Ð}{2}$-¦È0£©=¦Ð-2¦È0£¬Éè´Ë¹ý³ÌËùÓÃʱ¼äΪt£¬
Ôò£º£¨$\frac{2¦Ð}{{T}_{B}}$-$\frac{2¦Ð}{{T}_{A}}$£©t=¦Õ£¬½âµÃ£ºt=$\frac{£¨¦Ð-2{¦È}_{0}£©T}{2¦Ð£¨1-\sqrt{si{n}^{3}{¦È}_{0}}£©}$£»
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁËÇóÎÀÐǵÄÔ˶¯Ê±¼äÎÊÌ⣬Äܸù¾ÝÌâÄ¿¸ø³öµÄÐÅÏ¢·ÖÎöÊÓ½Ç×î´óʱµÄ°ë¾¶ÌØÕ÷£¬ÔÚÔ²ÖÜÔ˶¯ÖÐÉæ¼°¼¸ºÎ¹ØϵÇó°ë¾¶ÊÇÒ»¸ö»ù±¾¹¦ÎÊÌ⣮
A£® | ʹÆäµçѹ¼Ó±¶ | B£® | ʹÆäµçѹ¼õ°ë | C£® | ʹÆäµç×è¼Ó±¶ | D£® | ʹÆäµç×è¼õ°ë |
A£® | ÔÚÈκιßÐԲο¼ÏµÖУ¬Á¦Ñ§¹æÂɶ¼ÊÇÒ»ÑùµÄ£¬ÕâÒ»½áÂÛ³ÆΪ°®Òò˹̹Ïà¶ÔÐÔÔÀí | |
B£® | Éè¹âËÙΪc£¬ÄÇôÔÚÒÔ0.5cÔ˶¯·É´¬ÖÐÏòÈκη½Ïò·¢ÉäµÄ¹âËÙ¶ÈÈÔȻΪc | |
C£® | Âó¿Ë˹Τ´ÓÀíÂÛÉÏÔ¤ÑÔÁ˵ç´Å²¨µÄ´æÔÚ£¬ºÕ×Èͨ¹ýʵÑé֤ʵÁ˵ç´Å²¨µÄ´æÔÚ | |
D£® | ±ä»¯µÄµç³¡Ò»¶¨²úÉúµç´Å²¨ |
A£® | ¼´Ê±ËٶȵĴóСÊÇ$\sqrt{5}$v0 | B£® | Ô˶¯µÄʱ¼äÊÇ$\frac{2{v}_{0}}{g}$ | ||
C£® | ÊúÖ±·ÖËٶȵĴóСµÈÓÚ2v0 | D£® | Ô˶¯µÄλÒÆÊÇ$\frac{\sqrt{2}{v}_{0}^{2}}{g}$ |
A£® | ϸÏßËùÊܵÄÀÁ¦±äС | B£® | СÇòPÔ˶¯µÄ½ÇËٶȱäС | ||
C£® | QÊܵ½×ÀÃæµÄÖ§³ÖÁ¦±ä´ó | D£® | QÊܵ½×ÀÃæµÄ¾²Ä¦²ÁÁ¦±ä´ó |