题目内容
(12分)如图,一个质量为m的小球(可视为质点)以某一初速度从A点水平抛出,恰好从圆管BCD的B点沿切线方向进入圆弧,经BCD从圆管的最高点D射出,恰好又落到B点.已知圆弧的半径为R且A与D在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:
(1)小球从A点做平抛运动的初速度v0的大小;
(2)在D点处管壁对小球的作用力N;
(3)小球在圆管中运动时克服阻力做的功Wf.
(1)(2)方向竖直向上 (3)
解析试题分析:(1)小球从A到B为平抛运动
竖直方向自由落体即匀变速直线运动
则
在B点,合速度沿切线方向,速度合成如下图
由速度的几何关系可得 (3分)
(2)小球从D点离开轨道又落回到B此运动仍然是平抛运动:
竖直方向 解得:
水平方向
则小球从D点抛出的速度
在D点,重力和弹力的合力提供向心力公式即:
解得: 方向竖直向上 (6分)
(3)从A点运动到D点的过程,只有阻力做功,根据动能定理有
解得
考点:平抛运动 圆周运动 动能定理
练习册系列答案
相关题目
探究能力是进行物理学研究的重要能力之一.物体因绕轴转动而具有的动能叫转动动能,转动动能的大小与物体转动的角速度有关.为了研究某一砂轮的转动动能Ek与角速度ω的关系,某同学采用了下述实验方法进行探索.如图所示,先让砂轮由动力带动匀速旋转,测得其角速度ω,然后让砂轮脱离动力,由于克服转轴间摩擦力做功,砂轮最后停下,测出砂轮脱离动力到停止转动的圈数n,通过分析实验数据得出结论.另外已测试砂轮转轴的直径为2 cm,转轴间的摩擦力为10 N/π.经实验测得的几组ω和n如下表所示:
ω/rad·s-1 | 0.5 | 1 | 2 | 3 | 4 |
n | 5.0 | 20 | 80 | 180 | 320 |
Ek | | | | | |
(1)计算出砂轮每次脱离动力的转动动能,并填入上表中.
(2)由上述数据推导出该砂轮的转动动能Ek与角速度ω的关系式为 .
(3)若测得脱离动力后砂轮的角速度为2.5 rad/s,则它转过45圈时的角速度为 rad/s 。