题目内容
如图所示,MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场。现有质量m=1kg的ab金属杆以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终未滑出,cd绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:
(1)cd绝缘杆通过半圆导轨最高点时的速度大小v;
(2)电阻R产生的焦耳热Q。
解:
(1)cd绝缘杆通过半圆导轨最高点时,由牛顿第二定律有:
-----------(3分)
解得: -----------(3分)
(2)碰撞后cd绝缘杆滑至最高点的过程中,由动能定理有:
-----------(2分)
解得碰撞后cd绝缘杆的速度: -----------(2分)
两杆碰撞过程,动量守恒,有:
-----------(2分)
解得碰撞后ab金属杆的速度: -----------(2分)
ab金属杆进入磁场后由能量守恒定律有:
-----------(2分)
解得:Q=2J -----------(2分)
练习册系列答案
相关题目
如图所示,MN、PQ是两条在水平面内、平行放置的光滑金属导轨,导轨的右端接理想变压器的原线圈,变压器的副线圈与阻值为R=0.5Ω的电阻组成闭合回路,变压器的原副线圈匝数之比n1:n2=2,导轨宽度为L=0.5m.质量为m=1kg的导体棒ab垂直MN、PQ放在导轨上,在水平外力作用下,从t=0时刻开始往复运动,其速度随时间变化的规律是v=2sin
t,已知垂直轨道平面的匀强磁场的磁感应强度为B=1T,导轨、导体棒、导线和线圈的电阻均不计,电流表为理想交流电表,导体棒始终在磁场中运动.则下列说法中正确的是( )
π |
2 |
A、在t=1s时刻电流表的示数为
| ||||
B、导体棒两端的最大电压为1V | ||||
C、单位时间内电阻R上产生的焦耳热为0.25J | ||||
D、从t=0至t=3s的时间内水平外力所做的功为0.75J |