ÌâÄ¿ÄÚÈÝ
7£®ÈçͼËùʾ£¬¼ä¾àΪLƽÐÐÇÒ×ã¹»³¤µÄ¹â»¬µ¼¹ìÓÉÁ½²¿·Ö×é³É£ºÇãб²¿·ÖÓëˮƽ²¿·Öƽ»¬ÏàÁ¬£¬Çã½ÇΪ¦È£¬ÔÚÇãбµ¼¹ì¶¥¶ËÁ¬½ÓÒ»×èֵΪrµÄ¶¨Öµµç×裮ÖÊÁ¿Îªm¡¢µç×èҲΪrµÄ½ðÊô¸ËMN´¹Ö±µ¼¹ì¿ç·ÅÔÚµ¼¹ìÉÏ£¬ÔÚÇãбµ¼¹ìÇøÓò¼ÓÒÔ´¹Ö±µ¼¹ìƽÃæÏòÏ¡¢´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡£»ÔÚˮƽµ¼¹ìÇøÓò¼ÓÁíÒ»´¹Ö±¹ìµÀƽÃæÏòÏ¡¢´Å¸ÐӦǿ¶ÈҲΪBµÄÔÈÇ¿´Å³¡£®±ÕºÏ¿ª¹ØS£¬ÈýðÊô¸ËMN´ÓͼʾλÖÃÓɾ²Ö¹ÊÍ·Å£¬ÒÑÖª½ðÊô¸ËÔ˶¯µ½Ë®Æ½¹ìµÀÇ°£¬ÒÑ´ïµ½×î´óËٶȣ¬²»¼Æµ¼¹ìµç×èÇÒ½ðÊô¸ËʼÖÕÓëµ¼¹ì½Ó´¥Á¼ºÃ£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£®Ç󣺣¨1£©½ðÊô¸ËMNÔÚÇãбµ¼¹ìÉÏ»¬ÐеÄ×î´óËÙÂÊvm£»
£¨2£©½ðÊô¸ËMNÔÚÇãбµ¼¹ìÉÏÔ˶¯£¬ËÙ¶Èδ´ïµ½×î´óËÙ¶ÈvmÇ°£¬µ±Á÷¾¶¨Öµµç×èµÄµçÁ÷´ÓÁãÔö´óµ½I0µÄ¹ý³ÌÖУ¬Í¨¹ý¶¨Öµµç×èµÄµçºÉÁ¿Îªq£¬ÇóÕâ¶Îʱ¼äÄÚÔÚ¶¨Öµµç×èÉϲúÉúµÄ½¹¶úÈÈQ£»
£¨3£©½ðÊô¸ËMNÔÚˮƽµ¼¹ìÉÏ»¬ÐеÄ×î´ó¾àÀëxm£®
·ÖÎö £¨1£©½ðÊô¸Ë´ïµ½×î´óËÙ¶Èʱ£¬ÊÜÖØÁ¦¡¢Ö§³ÖÁ¦ºÍ°²ÅàÁ¦£¬¸ù¾ÝƽºâÌõ¼þÁÐʽÇó½â°²ÅàÁ¦£¬¸ù¾Ý°²ÅàÁ¦¹«Ê½ºÍÇиʽÁÐʽÇó½â×î´óËٶȣ»
£¨2£©µ±Á÷¾¶¨Öµµç×èµÄµçÁ÷´ÓÁãÔö´óµ½I0µÄ¹ý³ÌÖУ¬Ïȸù¾ÝÇиʽ¡¢Å·Ä·¶¨Âɹ«Ê½ºÍµçÁ÷¶¨ÒåʽÁªÁ¢Çó½âµÃµ½Î»ÒÆ£»ÔٶԸùý³Ì¸ù¾Ý¹¦ÄܹØϵÁÐʽÇó½â²úÉúµÄµçÈÈ£»
£¨3£©ÔÚˮƽÃæÉÏ»¬¶¯¹ý³Ì£¬¸ù¾ÝÇиʽ¡¢Å·Ä·¶¨Âɹ«Ê½¡¢°²ÅàÁ¦¹«Ê½µÃµ½°²ÅàÁ¦±í´ïʽ£¬ÔÙ½áºÏ΢Ԫ·¨ÁÐʽ·ÖÎöÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©½ðÊô¸ËMNÔÚÇãбµ¼¹ìÉÏ»¬ÐеÄËÙ¶È×î´óʱ£¬ÆäÊܵ½µÄºÏÁ¦ÎªÁ㣬
¶ÔÆäÊÜÁ¦·ÖÎö£¬¿ÉµÃ£ºmgsin¦È-BIL=0¡¢Ù
¸ù¾ÝÅ·Ä·¶¨ÂɿɵãºI=$\frac{BL{v}_{m}}{2r}$¡¢Ú
ÁªÁ¢¿ÉµÃ£ºvm=$\frac{2mgrsin¦È}{{B}^{2}{L}^{2}}$£»
£¨2£©ÉèÔÚÕâ¶Îʱ¼äÄÚ£¬½ðÊô¸ËÔ˶¯µÄλÒÆΪx£¬ÓɵçÁ÷µÄ¶¨Òå¿ÉµÃ£ºq=$\overline{I}t$¡¢Û
¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉ¡¢Å·Ä·¶¨Âɵãº$\overline{I}=\frac{B¡÷S}{2r¡÷t}=\frac{BLx}{2r¡÷t}$¡¢Ü
ÁªÁ¢¢Û¢ÜµÃ£º$q=\frac{BLx}{2r}$
½âµÃ£ºx=$\frac{2qr}{BL}$£»
ÉèµçÁ÷ΪI0ʱ½ðÊô¸ËµÄËÙ¶ÈΪv£¬¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉ¡¢Å·Ä·¶¨ÂÉ£¬¿ÉµÃ£ºI0=$\frac{BLv}{2r}$¡¢Ý
Éè´Ë¹ý³ÌÖУ¬µç·²úÉúµÄ½¹¶úÈÈΪQ£¬Óɹ¦ÄܹØϵ¿ÉµÃ£ºmgxsin¦È=Q+$\frac{1}{2}m{v}^{2}$¡¢Þ
µç×èR²úÉúµÄ½¹¶úÈÈQÈÈ=$\frac{1}{2}Q$¡¢ß
ÁªÁ¢¿ÉµÃ£ºQÈÈ=$\frac{mgqrsin¦È}{BL}-\frac{m{I}_{0}^{2}{r}^{2}}{{B}^{2}{L}^{2}}$£¬
£¨3£©Éè½ðÊô¸ËÔÚˮƽµ¼¹ìÉÏ»¬ÐеÄ×î´ó¾àÀëΪxm£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºBIL=ma¡¢à
ÓÉ·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉ¡¢Å·Ä·¶¨Âɺ͵çÁ÷µÄ¶¨Òå¿ÉµÃ£ºI=$\frac{BLv}{2r}$¡¢á
ÁªÁ¢¢à¢á¿ÉµÃ£º$\frac{{B}^{2}{L}^{2}}{2r}v=m\frac{¡÷v}{¡÷t}$£¬
$\frac{{B}^{2}{L}^{2}}{2r}v¡÷t=m¡÷v$£¬¼´$\frac{{B}^{2}{L}^{2}}{2r}{x}_{m}=m{v}_{m}$£¬
µÃ£º${x}_{m}=\frac{4{m}^{2}g{r}^{2}sin¦È}{{B}^{4}{L}^{4}}$£»
´ð£º£¨1£©½ðÊô¸ËMNÔÚÇãбµ¼¹ìÉÏ»¬ÐеÄ×î´óËÙÂÊvmΪ$\frac{2mgrsin¦È}{{B}^{2}{L}^{2}}$£»
£¨2£©Õâ¶Îʱ¼äÄÚÔÚ¶¨Öµµç×èÉϲúÉúµÄ½¹¶úÈÈQΪ$\frac{mgqrsin¦È}{BL}-\frac{m{I}_{0}^{2}{r}^{2}}{{B}^{2}{L}^{2}}$£»
£¨3£©½ðÊô¸ËMNÔÚˮƽµ¼¹ìÉÏ»¬ÐеÄ×î´ó¾àÀëxmΪ$\frac{4{m}^{2}g{r}^{2}sin¦È}{{B}^{4}{L}^{4}}$£®
µãÆÀ ±¾ÌâÊÇ»¬¹ìÎÊÌ⣬¹Ø¼üÊÇÊìÁ·ÔËÓÃÇиʽ¡¢Å·Ä·¶¨Âɹ«Ê½ºÍ°²ÅàÁ¦¹«Ê½£¬Í¬Ê±Òª×¢ÒâÇó½âµçÈÈʱÓù¦ÄܹØϵÁÐʽ·ÖÎö£¬Çó½âµçºÉÁ¿ºÍλÒÆʱÓÃƽ¾ùÖµ·ÖÎö£®
A£® | ³àµÀÉÏÎïÌåÓë¡°ÈýºÅÎÀÐÇ¡±µÄÏßËÙ¶ÈÖ®±ÈΪ$\frac{{v}_{1}}{v3}$=$\sqrt{\frac{R+h}{R}}$ | |
B£® | ³àµÀÉÏÎïÌåÓë½üµØÎÀÐǵĽÇËÙ¶ÈÖ®±ÈΪ$\frac{{¦Ø}_{1}}{{¦Ø}_{2}}$=$\sqrt{\frac{{R}^{3}}{£¨R+h£©^{3}}}$ | |
C£® | ³àµÀÉÏÎïÌåÓë¡°ÈýºÅÎÀÐÇ¡±µÄÏòÐļÓËÙ¶ÈÖ®±ÈΪ$\frac{{a}_{1}}{{a}_{3}}$=$\frac{R}{£¨R+h£©}$ | |
D£® | ½üµØÎÀÐÇ´¦Óë¡°ÈýºÅÎÀÐÇ¡±´¦µÄÖØÁ¦¼ÓËÙÖ®±ÈΪ$\frac{{g}_{2}}{{g}_{3}}$=$\frac{£¨R+h£©^{2}}{{R}^{2}}$ |
A£® | ´ËʱÁ÷¾Ïß¿òabcd¡¢a¡äb¡äc¡äd¡äµÄµçÁ÷Ç¿¶ÈÖ®±ÈΪ4£º3 | |
B£® | ´ËʱÏß¿òabcd¡¢a¡äb¡äc¡äd¡äËùÊÜ°²ÅàÁ¦µÄ¹¦ÂÊÖ®±ÈΪ4£º9 | |
C£® | ´ËʱÏß¿òabcd¡¢a¡äb¡äc¡äd¡äµÄ¼ÓËÙ¶ÈÖ®±ÈΪ4£º9 | |
D£® | ´Ëʱa¡¢b¼äµçѹUab=$\frac{kl{v}_{0}}{24}$ |
A£® | ³õʼʱ¿Ìµ¼Ìå°ôÊܵ½µÄ°²ÅàÁ¦´óС$F=\frac{{{B^2}{L^2}{v_0}}}{R}$ | |
B£® | ³õʼʱ¿Ìµ¼Ìå°ô¼ÓËٶȵĴóСa=2g+$\frac{{{B^2}{L^2}{v_0}}}{m£¨R+r£©}$ | |
C£® | µ¼Ìå°ô¿ªÊ¼Ô˶¯Ö±µ½×îÖÕ¾²Ö¹µÄ¹ý³ÌÖУ¬¿Ë·þ°²ÅàÁ¦×ö¹¦µÈÓÚ°ôÉϵç×èrµÄ½¹¶úÈÈ | |
D£® | µ¼Ìå°ô¿ªÊ¼Ô˶¯Ö±µ½×îÖÕ¾²Ö¹µÄ¹ý³ÌÖУ¬»Ø·ÉϲúÉúµÄ½¹¶úÈÈQ=$\frac{1}{2}mv_0^2+\frac{{2{m^2}{g^2}}}{k}$ |
A£® | Դų¡´©¹ý±ÕºÏ»Ø·µÄ´ÅͨÁ¿Ôö¼Óʱ£¬¸ÐÓ¦µçÁ÷µÄ´Å³¡ÓëԴų¡·½Ïò¿ÉÄÜÏàͬ | |
B£® | ±ÕºÏµç·µÄÒ»²¿·Öµ¼ÌåÔڴų¡Ô˶¯Ê±£¬Ò»¶¨Êܵ½°²ÅàÁ¦µÄ×÷Óà | |
C£® | ¸ÐÓ¦µçÁ÷µÄ´Å³¡×ÜÊÇÒª×è°ÒýÆð¸ÐÓ¦µçÁ÷µÄ´ÅͨÁ¿µÄ±ä»¯ | |
D£® | ¸ÐÉúµçÁ÷µÄ´Å³¡·½Ïò×ÜÊǸúԴų¡µÄ·½ÏòÏà·´£¬×è°Ô´Å³¡ |
A£® | Ïò¶« | B£® | ÏòÄÏ | C£® | ÏòÎ÷ | D£® | Ïò±± |