题目内容
如图所示,在倾角为θ的粗糙斜面上,有一个质量为m的物体被水平力F推着静止于斜面上,已知物体与斜面间的动摩擦因数为μ,且μ<tanθ,若物体恰好不下滑,则推力F为多少?若物体恰好不上滑,则推力F为多少?(最大静摩擦力等于滑动摩擦力)
分析:若物体恰好不下滑,摩擦力方向沿斜面向上,若物体恰好不上滑,摩擦力方向沿斜面向下.分别针对两种情况,运用平衡条件和正交分解法,求出F的两个值.
解答:解:若物体恰好不下滑,也就是F较小时,摩擦力方向将沿斜面向上,
根据受力分析和平衡条件有
沿斜面方向上:F cosθ+f=mgsinθ
垂直于斜面方向上:Fsinθ+mgcosθ=FN
当摩擦力达到最大静摩擦力,即f=μFN时,推力F最小.
Fmin=
mg
若物体恰好不上滑,也就是F较大时,摩擦力方向将沿斜面向下,
根据受力分析和平衡条件有
沿斜面方向上:F cosθ=f+mgsinθ
垂直斜面方向上:Fsinθ+mgcosθ=FN
当摩擦力达到最大静摩擦力,即f=μFN时,推力F最大.
Fmax=
mg
答:若物体恰好不下滑,则推力F为
mg.
若物体恰好不上滑,则推力F为
mg.
根据受力分析和平衡条件有
沿斜面方向上:F cosθ+f=mgsinθ
垂直于斜面方向上:Fsinθ+mgcosθ=FN
当摩擦力达到最大静摩擦力,即f=μFN时,推力F最小.
Fmin=
sinθ-μcosθ |
cosθ+μsinθ |
若物体恰好不上滑,也就是F较大时,摩擦力方向将沿斜面向下,
根据受力分析和平衡条件有
沿斜面方向上:F cosθ=f+mgsinθ
垂直斜面方向上:Fsinθ+mgcosθ=FN
当摩擦力达到最大静摩擦力,即f=μFN时,推力F最大.
Fmax=
sinθ+μcosθ |
cosθ-μsinθ |
答:若物体恰好不下滑,则推力F为
sinθ-μcosθ |
cosθ+μsinθ |
若物体恰好不上滑,则推力F为
sinθ+μcosθ |
cosθ-μsinθ |
点评:此题主要考查了受力分析和正交分解法的在平衡问题的应用,属于典型的问题,难度不大,属于中档题.
练习册系列答案
相关题目