ÌâÄ¿ÄÚÈÝ
18£®Èçͼ¼×Ëùʾ£¬ÔÚ¡°ÑéÖ¤Á¦µÄƽÐÐËıßÐζ¨Ôò¡±µÄʵÑéÖУ¬Ä³Í¬Ñ§½øÐÐʵÑéµÄÖ÷Òª²½ÖèÊÇ£º¢Ù½«ÏðƤ½îµÄÒ»¶Ë¹Ì¶¨ÔÚľ°åÉϵÄAµã£¬ÁíÒ»¶ËË©ÉÏÁ½¸ùÉþÌ×£¬Ã¿¸ùÉþÌ×·Ö±ðÁ¬×ÅÒ»¸öµ¯»É²âÁ¦¼Æ£®
¢ÚÑØ×ÅÁ½¸ö·½ÏòÀµ¯»É²âÁ¦¼Æ£¬½«ÏðƤ½îµÄ»î¶¯¶ËÀµ½Ä³Ò»Î»Ö㬽«¸ÃλÖñê¼ÇΪOµã£¬¶ÁÈ¡´Ëʱµ¯»É²âÁ¦¼ÆµÄʾÊý£¬·Ö±ð¼Ç¼ΪF1¡¢F2£¬²¢ÓñÊÔÚÁ½ÉþµÄÀÁ¦·½ÏòÉÏ·Ö±ð±ê¼Ça¡¢bÁ½µã£¬·Ö±ð½«ÆäÓëOµãÁ¬½Ó£¬±íʾÁ½Á¦µÄ·½Ïò£®
¢ÛÔÙÓÃÒ»¸öµ¯»É²âÁ¦¼Æ½«ÏðƤ½îµÄ»î¶¯¶ËÈÔÈ»ÀÖÁOµã£¬¼Ç¼ÆäÀÁ¦FµÄ´óС²¢ÓÃÉÏÊö·½·¨¼Ç¼Æä·½Ïò£®
£¨1£©ÔÚ¢ÛÖУ¬ÓÃÒ»¸öµ¯»É²âÁ¦¼Æ½«ÏðƤ½îµÄ»î¶¯¶ËÈÔÈ»ÀÖÁOµã£¬ÕâÑù×öµÄÄ¿µÄÊÇ£ººÏÁ¦Óë·ÖÁ¦µÄ×÷ÓÃЧ¹ûÏàͬ£®
£¨2£©ÕâλͬѧÔÚʵÑéÖÐÈ·¶¨·ÖÁ¦·½Ïòʱ£¬Í¬ÊµÑéС×éµÄÁíÒ»¸öͬѧÌá³ö£ºÍ¼¼×ËùʾµÄaµãλÖñê¼ÇµÃ²»Ì«Í×µ±£¬ÆäÔÒòÊÇ£ºOa¼ä¾à̫С£®
£¨3£©Í¼ÒÒÊÇÔÚ°×Ö½Éϸù¾ÝʵÑé½á¹û×÷³öµÄÁ¦µÄͼʾ£¬ÆäÖÐF1ºÍF2µÄºÏÁ¦£ºÀíÂÛÖµÊÇF¡ä£¬Êµ¼Ê²âÁ¿ÖµÊÇF£®£¨ÌîF»òF¡ä£©
£¨4£©ÒÑÖªÁ½¹²µãÁ¦F1=3.0N¡¢F2=4.0N£¬Á½Á¦Ö®¼ä¼Ð½ÇΪ60¡ã£¬ÇëÄãÀûÓá°Á¦µÄƽÐÐËıßÐζ¨Ôò¡±Çó³öÕâÁ½¸öÁ¦µÄºÏÁ¦£¬ºÏÁ¦´óСΪ6.2N£¨±£ÁôһλСÊý£©£®
·ÖÎö £¨1£©ºÏÁ¦Óë·ÖÁ¦¼äµÄ¹ØϵÊǵÈЧÌæ´ú£¬ËùÒÔÎÒÃÇÒªÈÃÒ»¸öÁ¦£¨ºÏÁ¦£©ÓëÁ½¸öÁ¦£¨·ÖÁ¦£©²úÉúÏàͬµÄ×÷ÓÃЧ¹û£»
£¨2£©È·¶¨Á¦·½Ïòʱ£¬ÓûµãµÄ·½·¨¼Ç¼£¬Á½µãÈ·¶¨Ò»ÌõÖ±Ïߣ¬Á½¸öµã¾àÀëÊʵ±µÄÔ¶Ò»µãÄܼõСÎó²î£»
£¨3£©Êý¾Ý´¦ÀíʱҪעÒ⣺ÓÃƽÐÐËıßÐλ³öÀ´µÄÊÇÀíÂÛÖµ£¬ÓëÏðƤ½îͬÏßµÄÊÇʵ¼ÊÖµ£»
£¨4£©¸ù¾ÝÁ¦µÄͼʾҪÇó½øÐÐ×÷ͼ£¬×¢Òâ±íÃ÷Á¦µÄ´óС¡¢·½Ïò¡¢×÷Óõ㣬Ȼºó¸ù¾ÝƽÐÐËıßÐζ¨ÔòÇó³öºÏÁ¦µÄ´óС£®
½â´ð ½â£º£¨1£©ºÏÁ¦Óë·ÖÁ¦¼äµÄ¹ØϵÊǵÈЧÌæ´ú£¬ËùÒÔÎÒÃÇÒªÈÃÒ»¸öÁ¦£¨ºÏÁ¦£©ÓëÁ½¸öÁ¦£¨·ÖÁ¦£©²úÉúÏàͬµÄ×÷ÓÃЧ¹û£®ËùÒÔ½«ÏðƤ½îµÄ»î¶¯¶Ë¶¼ÀÖÁOµã£¬ÕâÑù×öµÄÄ¿µÄÊÇ£ººÏÁ¦Óë·ÖÁ¦µÄ×÷ÓÃЧ¹ûÏàͬ£®
£¨2£©È·¶¨Á¦·½Ïòʱ£¬ÓûµãµÄ·½·¨¼Ç¼£¬Á½µãÈ·¶¨Ò»ÌõÖ±Ïߣ¬Á½¸öµã¾àÀëÊʵ±µÄÔ¶Ò»µãÄܼõСÎó²î£®ËùÒÔÕâλͬѧÔÚʵÑéÖÐÈ·¶¨·ÖÁ¦·½Ïòʱ£¬Í¼¼×ËùʾµÄaµã±ê¼ÇµÃ²»Í×£¬ÆäÔÒòÊÇ£ºOa¼ä¾à̫С£®
£¨3£©Êý¾Ý´¦ÀíʱҪעÒ⣺ÓÃƽÐÐËıßÐλ³öÀ´µÄÊÇÀíÂÛÖµ£¬Í¼ÖÐF¡äÊÇƽÐÐËıßÐεĶԽÇÏߣ¬¹ÊF¡äÊÇÓ¦ÓÃÁ¦µÄºÏ³ÉµÄƽÐÐËıßÐζ¨ÔòÇó³öµÄF1ºÍF2µÄºÏÁ¦£¬Êµ¼ÊÖµÊÇF£®
£¨4£©F1¡¢F2µÄͼʾ¼°Á¦µÄºÏ³ÉͼÈçÏÂͼËùʾ£º
¸ù¾Ý±ÈÀý¹Øϵ¿ÉÖªºÏÁ¦´óСΪF=6.1N
¹Ê´ð°¸Îª£º
£¨1£©ºÏÁ¦Óë·ÖÁ¦µÄ×÷ÓÃЧ¹ûÏàͬ£»
£¨2£©Oa¼ä¾à̫С£»
£¨3£©F¡ä¡¢F£»
£¨4£©6.2£®
µãÆÀ ʵÑéÖÐÒ»¶¨ÒªÍ¨¹ýʵÑéµÄÔÀíÈ¥ÕÆÎÕʵÑ飬ÍÑÀ뿪ÔÀíÊÇÎÞ·¨ÕýÈ·½â¾öʵÑéÎÊÌâµÄ£¬ÖªµÀÁ¦µÄºÏ³É×ñÑƽÐÐËıßÐζ¨Ôò£¬»á¸ù¾ÝƽÐÐËıßÐζ¨Ôò½øÐÐÎó²î·ÖÎö£®
A£® | µØÇòµÄÖÊÁ¿Îª $\frac{{g}_{0}{R}^{2}}{G}$ | |
B£® | µØÇò±íÃæ³àµÀ´¦µÄÖØÁ¦¼ÓËٶȴóСΪ $\frac{4{¦Ð}^{2}R}{{T}^{2}}$ | |
C£® | ½üµØÎÀÐÇÔÚ¹ìµÀÔËÐеļÓËٶȴóСΪ $\frac{4{¦Ð}^{2}R}{{T}^{2}}$ | |
D£® | µØÇòͬ²½ÎÀÐÇÔÚ¹ìµÀÔËÐеļÓËٶȴóСΪ$\root{3}{\frac{16{g}_{0}{R}^{2}{¦Ð}^{2}}{{T}^{2}}}$ |
A£® | ÔÚ0.4 s¡«2.5 sʱÎÊÄÚ£¬×èÀ¹Ë÷µÄÕÅÁ¦¼¸ºõ²»Ëæʱ¼ä±ä»¯ | |
B£® | ´Ó׎¢µ½Í£Ö¹£¬·É»úÔÚ¼×°åÉÏ»¬ÐеľàÀëԼΪÎÞ×èÀ¹Ë÷ʱµÄ$\frac{1}{10}$ | |
C£® | ÔÚ»¬Ðйý³ÌÖУ¬·ÉÐÐÔ±Ëù³ÐÊܵļÓËٶȴóС²»»á³¬¹ý2.5g | |
D£® | ÔÚ0.4 s¡«2.5 sʱ¼äÄÚ£¬×èÀ¹ÏµÍ³¶Ô·É»ú×ö¹¦µÄ¹¦ÂÊÖð½¥¼õС |
A£® | $\frac{k}{\sqrt{{k}^{2}-1}}$ | B£® | $\frac{1}{\sqrt{{k}^{2}-1}}$ | C£® | $\frac{1}{\sqrt{{k}^{2}-2}}$ | D£® | $\sqrt{2-{k}^{2}}$ |
A£® | 1£º3£º6 | B£® | 1£º2£º3 | C£® | 1£º2£º2 | D£® | 1£º9£º36 |
A£® | ÔÚʱ¿Ìtl£¬a³µÓëb³µÏàÓö | |
B£® | ÔÚʱ¿Ìt2£¬a¡¢bÁ½³µÔ˶¯·½ÏòÏà·´ | |
C£® | ÔÚtlµ½t2Õâ¶Îʱ¼äÄÚ£¬b³µµÄλÒƱÈa³µÐ¡ | |
D£® | ÔÚtlµ½t2Õâ¶Îʱ¼äÄÚ£¬b³µµÄËÙÂÊÒ»Ö±±Èa³µµÄС |