ÌâÄ¿ÄÚÈÝ
1£®ÈçͼËùʾµÄ´«ËÍ´ø£¬Æäˮƽ²¿·ÖabµÄ³¤¶ÈΪ4m£¬Çãб²¿·ÖbcµÄ³¤¶ÈΪ4m£¬bcÓëˮƽÃæµÄ¼Ð½ÇΪ¦Á=37¡ã£¬½«Ò»Ð¡Îï¿éA£¨¿ÉÊÓΪÖʵ㣩ÇáÇá·ÅÓÚa¶ËµÄ´«ËÍ´øÉÏ£¬Îï¿éAÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì=0.25£¬µ±´«ËÍ´øÑØͼʾ·½ÏòÒÔv=2m/sµÄËÙ¶ÈÔÈËÙÔ˶¯Ê±£¬ÈôÎï¿éAʼÖÕδÍÑÀë´«ËÍ´ø£¬ÊÔÇ󣺣¨g=10m/s2£¬sin37¡ã=0.6£¬cos37¡ã=0.8£©£¨1£©Ð¡Îï¿éÔÚˮƽ²¿·Ö¼ÓËÙÔ˶¯µÄ¼ÓËٶȣ»
£¨2£©Ð¡Îï¿éA´Óa¶Ë´«Ë͵½b¶ËËùÓõÄʱ¼ä£»
£¨3£©Ð¡Îï¿éA´Ób¶Ë´«Ë͵½c¶ËËùÓõÄʱ¼ä£®
·ÖÎö £¨1¡¢2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öСÎï¿éÔÚˮƽ²¿·Ö¼ÓËٵļÓËٶȣ®¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Çó³öËٶȴﵽ´«ËÍ´øËٶȵÄʱ¼ä£¬ÒÔ¼°¸ù¾ÝËÙ¶ÈλÒƹ«Ê½Çó³öÔȼÓËÙÔ˶¯µÄλÒÆ£¬µÃ³öÔÈËÙÔ˶¯µÄλÒÆ£¬¸ù¾ÝλÒƹ«Ê½Çó³öÔÈËÙÔ˶¯µÄʱ¼ä£¬´Ó¶øµÃ³öСÎï¿éA´Óa¶Ë´«Ë͵½b¶ËËùÓõÄʱ¼ä£»
£¨3£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÔÚÇãб´«ËÍ´øÉϵļÓËٶȣ¬½áºÏλÒÆʱ¼ä¹«Ê½Çó³öСÎï¿éA´Ób¶Ë´«Ë͵½c¶ËËùÓõÄʱ¼ä£®
½â´ð ½â£º£¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬Ð¡Îï¿éÔÚˮƽ²¿·Ö¼ÓËٵļÓËÙ¶È${a}_{1}=¦Ìg=0.25¡Á10m/{s}^{2}=2.5m/{s}^{2}$£®
£¨2£©Ð¡Îï¿éËٶȴﵽ´«ËÍ´øËÙ¶ÈËùÐèµÄʱ¼ä${t}_{1}=\frac{v}{{a}_{1}}=\frac{2}{2.5}s=0.8s$£¬Î»ÒÆ${x}_{1}=\frac{{v}^{2}}{2a}=\frac{4}{5}m=0.8m$£¬
ÔòСÎï¿éÔÚab¶ÎÔÈËÙÔ˶¯µÄʱ¼ä${t}_{2}=\frac{4-0.8}{2}s=1.6s$£¬
ÔòСÎï¿éA´Óa¶Ë´«Ë͵½b¶ËËùÓõÄʱ¼ät=t1+t2=0.8+1.6s=2.4s£®
£¨3£©Ð¡Îï¿éÔÚ´«ËÍ´øbc¶ÎµÄ¼ÓËÙ¶È${a}_{2}=\frac{mgsin37¡ã-¦Ìmgcos37¡ã}{m}$=gsin37¡ã-¦Ìgcos37¡ã=6-0.25¡Á8=4m/s2£¬
¸ù¾Ýx=$vt+\frac{1}{2}{a}_{2}{t}^{2}$µÃ£¬4=2t¡ä+2t¡ä2£¬½âµÃt¡ä=1s£®
´ð£º£¨1£©Ð¡Îï¿éÔÚˮƽ²¿·Ö¼ÓËÙÔ˶¯µÄ¼ÓËÙ¶ÈΪ2.5m/s2£»
£¨2£©Ð¡Îï¿éA´Óa¶Ë´«Ë͵½b¶ËËùÓõÄʱ¼äΪ2.4s£»
£¨3£©Ð¡Îï¿éA´Ób¶Ë´«Ë͵½c¶ËËùÓõÄʱ¼äΪ1s£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇåÎï¿éÔÚˮƽ´«ËÍ´øºÍÇãб´«ËÍ´øÉϵÄÔ˶¯¹æÂÉ£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½×ÛºÏÇó½â£¬ÄѶȲ»´ó£®
A£® | 2Emsin2wt | B£® | 2Emsinwt | C£® | Emsin2wt | D£® | Emsinwt |
A£® | tan¦Á | B£® | $\frac{cos¦Á}{sin¦Á}$ | C£® | tan¦Á$\sqrt{tan¦Á}$ | D£® | cos¦Á$\sqrt{cos¦Á}$ |
A£® | P¡¢Q¹¹³ÉµÄµçÈÝÆ÷µÄµçÈÝÔö´ó | B£® | PÉϵçºÉÁ¿¼õС | ||
C£® | MµãµÄµçÊƱÈNµãµÄµÍ | D£® | MµãµÄµçÊƱÈNµãµÄ¸ß |
A£® | ÈôСÇòµ½´ïAµãʱǡºÃ¶Ôϸ¹ÜÎÞ×÷ÓÃÁ¦£¬Ôò¹Ü¿ÚDÀëˮƽµØÃæµÄ¸ß¶ÈH=2R | |
B£® | ÈôСÇòµ½´ïAµãʱǡºÃ¶Ôϸ¹ÜÎÞ×÷ÓÃÁ¦£¬ÔòСÇòÂäµ½µØÃæʱÓëAµãµÄˮƽ¾àÀëx=2R | |
C£® | СÇòÔÚϸ¹ÜC´¦¶Ôϸ¹ÜµÄѹÁ¦Ð¡ÓÚmg | |
D£® | СÇòÄܵ½´ïA´¦µÄ×îСÊͷŸ߶ÈHmin=2R |
A£® | ·ÖÁ¦Ö®Ò»´¹Ö±F | B£® | Á½·ÖÁ¦ÓëFÔÚÒ»ÌõÖ±ÏßÉÏ | ||
C£® | Ò»·ÖÁ¦µÄ´óСÓëFÏàͬ | D£® | Ò»¸ö·ÖÁ¦ÓëFÏàͬ |
A£® | ±äѹÆ÷µÄÔÑÊý±ÈÊÇU1£ºU0 | |
B£® | ±äѹÆ÷ÊäÈëµçѹµÄ˲ʱֵÊÇu=U1sin2¦Ðnt | |
C£® | µçÁ÷±íµÄʾÊýÊÇ$\frac{{{U}_{0}}^{2}}{R{U}_{1}}$ | |
D£® | ÏßȦÖвúÉúµÄµç¶¯ÊÆ×î´óÖµÊÇEm=$\sqrt{2}$U1 |