题目内容
【题目】如图所示,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道cd、ef固定在水平面内,相距为L,轨道左端c、e间连接一阻值为R的电阻.将一质量为m的导体棒ab垂直于cd、ef放在轨道上,与轨道接触良好.轨道和导体棒的电阻均不计.
(1)导体棒ab沿轨道以速度v向右做匀速运动.时,磁感应强度为,此时ab到达的位置恰好使cabe构成一个边长为L的正方形.为使闭合电路中不产生感应电流,求从开始,磁感应强度B随时间t变化的关系式.
(2)如果匀强磁场的磁感应强度B保持不变,为使导体棒ab沿轨道以速度v向右做匀速运动,需对导体棒ab施加一个水平向右的外力F.
①求外力F的大小;
②通过公式推导验证:在时间内,外力F对导体棒ab所做的功W等于电路获得的电能,也等于电阻R中产生的焦耳热Q.
【答案】(1) (2) ① ②证明过程见解析。
【解析】
(1)要使闭合电路中不产生感应电流,穿过闭合电路的磁通量应保持不变.
时,穿过闭合电路的磁通量
设t时刻匀强磁场的磁感应强度为B,此时的磁通量为:
则
得
(2)①导体棒ab中的感应电流为:
导体棒ab所受的安培力为:
导体棒ab匀速运动,水平外力为:
②导体棒ab匀速运动,有:
在时间内,外力F对ab所做的功为:
电动势为:
电路获得的电能为:
电阻R中产生的焦耳热为:
可见,外力F对导体棒ab所做的功W等于电路获得的电能,也等于电阻R中产生的焦耳热Q.
练习册系列答案
相关题目