ÌâÄ¿ÄÚÈÝ
5£®ÈçͼËùʾ£¬Æ½ÐÐÓڹ⻬бÃæµÄÇᵯ»É¾¢¶ÈϵÊýΪk£¬Ò»¶Ë¹Ì¶¨ÔÚÇã½ÇΪ¦ÈµÄбÃæµ×¶Ë£¬ÁíÒ»¶ËÓëÎï¿éAÁ¬½Ó£¬Îï¿éBÑØбÃæµþ·ÅÔÚÎï¿éAÉϵ«²»ð¤Á¬£®¹â»¬Ð±Ãæ¹ìµÀÓë´«Ë͹ìµÀÁ¼ºÃ¶Ô½Ó£¬´«Ë͹ìµÀƽÃæÓëˮƽ·½ÏòÇã½ÇÒ²ÊǦȣ¬Æ¤´ø´«¶¯×°ÖÃ˳ʱÕëÔÈËÙת¶¯£¬Îï¿éA£¬BÖÊÁ¿¾ùΪm£¬³õʼʱÁ½Îï¿é¾ù¾²Ö¹£®ÏÖÓÃƽÐÐÓÚбÃæÏòÉϵÄÀÁ¦À¶¯Îï¿éB£¬Ê¹B×ö¼ÓËÙ¶ÈΪaµÄÔȼÓËÙÔ˶¯£¬Á½Îï¿éÔÚ¿ªÊ¼Ò»¶Îʱ¼äÄÚµÄv-tͼÏóÈçͼËùʾ£¨t1ʱ¿ÌA¡¢BµÄͼÏßÏàÇУ¬t2ʱ¿Ì¶ÔÓ¦AͼÏßµÄ×î¸ßµã£©£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬£¨t1ºÍt2£¬v1ºÍv2¾ùδ֪£©£¨1£©Çót2ʱ¿Ìµ¯»ÉµÄÐα䳤¶Èx£»
£¨2£©Çót1µÄÖµ£»
£¨3£©ÒÑÖª¦È=37¡ã£¬´«ËÍ´øÁ½ÂÖÖáÐÄÏà¾àL=5m£¬ÎïÌåBÓëƤ´ø¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.25£®ÉèAB¸ÕºÃÔÚCµã£¨Ð±ÃæÓë´«ËÍ´øµÄÁ¬½Óµã£©·ÖÀë²¢½øÈë´«Ë͹ìµÀ£¬ÉèÎïÌåB»¬µ½´«ËÍ´øµÄCµãʱËÙ¶ÈΪ8m/s£¬ÎïÌå¿ÉÊÓΪÖʵ㣬Èç¹ûÔÚÎïÌåBµ½´ïCµãͬʱ³·È¥ÀÁ¦F£¬£¨sin37¡ã=0.6£¬cos37¡ã=0.8£©£©Èô´«ËÍ×°ÖÃÔÈËÙת¶¯µÄËÙ¶Èv¿ÉÔÚv£¾4m/sµÄ·¶Î§ÄÚµ÷½Ú£¬ÊÔÍƵ¼ÎïÌåB»¬¶¯µ½¶¥¶ËDʱËÙ¶ÈvDËæ´«ËÍ´øËÙ¶Èv±ä»¯µÄ¹Øϵʽ£¬gÈ¡l0m/s2£®
·ÖÎö £¨1£©AµÄËÙ¶È×î´óʱ¼ÓËÙ¶ÈΪÁ㣬¸ù¾Ýºú¿Ë¶¨ÂÉÇó³öA´ïµ½×î´óËÙ¶ÈʱµÄλÒÆ£»
£¨2£©ÓÉͼ¶Á³ö£¬t1ʱ¿ÌA¡¢B¿ªÊ¼·ÖÀ룬¶ÔA¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó½ât1£»
£¨3£©·Ö´«ËÍ´øËÙ¶ÈÔÚ4m/s£¼v£¼8m/sºÍv¡Ý8m/sÁ½¸ö·¶Î§£¬¸ù¾ÝÔ˶¯Ñ§»ù±¾¹«Ê½Çó½â£®
½â´ð ½â£º£¨1£©ÓÉͼ֪£¬AµÄ¼ÓËÙ¶ÈΪÁ㣬ËÙ¶È×î´ó£¬
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɺͺú¿Ë¶¨Âɵãºmgsin¦È=kx£¬µÃ£º$x=\frac{mgsin¦È}{k}$
£¨2£©ÓÉͼ¶Á³ö£¬t1ʱ¿ÌA¡¢B¿ªÊ¼·ÖÀ룬¶ÔA¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£º
kx-mgsin¦È=ma
¿ªÊ¼Ê±ÓУº2mgsin¦È=kx0£¬ÓÖx0-x=$\frac{1}{2}a{t}_{1}^{2}$
ÁªÁ¢ÒÔÈýʽµÃ£ºt1=$\sqrt{\frac{2£¨mgsin¦È-ma£©}{ak}}$£®
£¨3£©µ±´«ËÍ´øµÄËÙ¶ÈÔÚ4m/s£¼v£¼8m/sµÄ·¶Î§ÄÚµ÷½Úʱ£¬ÎïÌåBÏÈÒÔ¼ÓËÙ¶Èa1¼õËÙÏòÉÏ»¬ÐÐ${x}_{1}^{\;}=\frac{{v}_{0}^{2}-{v}_{\;}^{2}}{2{a}_{1}^{\;}}$
µ±Ëٶȼûµ½VºóÓÖÒÔa2¼õËÙÏòÉÏ»¬ÐÐ
ÎïÌåB»¬¶¯µ½DµãʱËÙ¶ÈvDËæËÙ¶ÈvµÄ±ä»¯¹ØϵʽÊÇ${v}_{D}^{\;}=\sqrt{\frac{{v}_{\;}^{2}}{2}-8}$
µ±´«ËÍ´øµÄËÙ¶ÈÔÚv¡Ý8m/sµÄ·¶Î§ÄÚµ÷½Úʱ£¬ÎïÌåB½«ÒÔ¼ÓËÙ¶Èa2¼õËÙ»¬Ðе½Dµã£¬
${v}_{D}^{2}-{v}_{0}^{2}=-2aL$
ÎïÌåB»¬¶¯µ½DµãʱËÙ¶ÈvDËæËÙ¶ÈvµÄ±ä»¯¹ØϵʽÊÇ£º${v}_{D}^{\;}=2\sqrt{6}m/s$
´ð£º£¨1£©t2ʱ¿Ìµ¯»ÉµÄÐα䳤¶ÈxΪ$\frac{mgsin¦È}{k}$£»
£¨2£©t1µÄÖµ$\sqrt{\frac{2£¨mgsin¦È-ma£©}{ak}}$£»
£¨3£©ÎïÌåB»¬¶¯µ½¶¥¶ËDʱËÙ¶ÈvDËæ´«ËÍ´øËÙ¶Èv±ä»¯µÄ¹Øϵʽ£¬µ±4m/s£¼v£¼8m/sʱ${v}_{D}^{\;}=\sqrt{\frac{{v}_{\;}^{2}}{2}-8}$£»µ±v¡Ý8m/sʱ£¬${v}_{D}^{\;}=2\sqrt{6}m/s$
µãÆÀ ´ÓÊÜÁ¦½Ç¶È¿´£¬Á½ÎïÌå·ÖÀëµÄÌõ¼þÊÇÁ½ÎïÌå¼äµÄÕýѹÁ¦Îª0£®´ÓÔ˶¯Ñ§½Ç¶È¿´£¬Ò»ÆðÔ˶¯µÄÁ½ÎïÌåÇ¡ºÃ·ÖÀëʱ£¬Á½ÎïÌåÔÚÑØбÃæ·½ÏòÉϵļÓËٶȺÍËÙ¶ÈÈÔÏàµÈ£®
A£® | ²â°ÚÏß³¤Ê±°ÚÏßÀµÃ¹ý½ô | |
B£® | °ÚÏßÉ϶ËδÀι̵ØϵÓÚÐüµã£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏß³¤¶ÈÔö¼ÓÁË | |
C£® | ¿ªÊ¼¼Æʱʱ£¬Ãë±í¹ý³Ù°´Ï | |
D£® | ʵÑéÖÐÎó½« 49´ÎÈ«Õñ¶¯ÊýΪ 50´Î |
A£® | ÎïÌåAÕû¸öÔ˶¯¹ý³Ì£¬µ¯»É¶ÔÎïÌåAµÄ³åÁ¿ÎªÁã | |
B£® | ÎïÌåAÏòÓÒÔ˶¯¹ý³ÌÖÐÓ뵯»É½Ó´¥µÄʱ¼äÒ»¶¨µÈÓÚÎïÌåAÏò×óÔ˶¯¹ý³ÌÖÐÓ뵯»É½Ó´¥µÄʱ¼ä | |
C£® | ÎïÌåAÏò×óÔ˶¯µÄ×î´ó¶¯ÄÜEkm=$\frac{{{I}_{0}}^{2}}{2m}$-2¦Ìmgx0 | |
D£® | ÎïÌåAÓ뵯»É×÷ÓõĹý³ÌÖУ¬ÏµÍ³µÄ×î´óµ¯ÐÔÊÆÄÜEp=$\frac{{{I}_{0}}^{2}}{2m}$-¦Ìmgx0 |
A£® | $\frac{1}{2}$$\sqrt{2gH}$ | B£® | $\sqrt{gH}$ | C£® | $\sqrt{2gH}$ | D£® | 2$\sqrt{gH}$ |
A£® | E1£¼E2 | B£® | E1£¾E2 | C£® | EP1=EP2 | D£® | EP1£¾EP2 |
A£® | a³µËÙ¶ÈÏȼõСºóÔö´ó£¬b³µËÙ¶ÈÏÈÔö´óºó¼õС | |
B£® | t1ʱ¿Ìa³µÔÚÇ°£¬b³µÔÚºó | |
C£® | t1¡«t2ʱ¿Ìa¡¢bµÄλÒÆÏàͬ | |
D£® | a³µ¼ÓËÙ¶ÈÏȼõСºóÔö´ó£¬b³µ¼ÓËÙ¶ÈÏȼõСºóÔö´ó |
A£® | ´óÁ¿ÆøÌå·Ö×ÓµÄÔ˶¯ÔÓÂÒÎÞÕ£¬ÔÚijһʱ¿Ì£¬Ïò×ÅÈκÎÒ»¸ö·½ÏòÔ˶¯µÄ·Ö×Ó¶¼ÓУ¬¶øÇÒÏò¸÷¸ö·½ÏòÔ˶¯µÄÆøÌå·Ö×ÓÊýÄ¿¶¼ÏàµÈ | |
B£® | ´óÁ¿ÆøÌå·Ö×Ó×öÎÞ¹æÔòÔ˶¯£¬ËÙÂÊÓдóÓÐС£¬µ«ÊÇ·Ö×ÓµÄËÙÂÊ°´¡°ÖÐ ¼ä ÉÙ£¬Á½ Í· ¶à¡±µÄ ¹æ ÂÉ·Ö²¼ | |
C£® | ÆøÌåѹǿµÄ´óС¸úÆøÌå·Ö×ÓµÄƽ¾ù¶¯ÄÜ¡¢·Ö×ÓµÄÃܼ¯³Ì¶ÈÕâÁ½¸öÒòËØÓÐ¹Ø | |
D£® | Ò»¶¨ÖÊÁ¿µÄijÖÖÀíÏëÆøÌ壬ζÈÉý¸ßʱ£¬·Ö×ÓµÄƽ¾ù¶¯ÄÜÔö´ó£¬ÆøÌåµÄѹǿһ¶¨Ôö´ó | |
E£® | ÆøÌå¶ÔÈÝÆ÷µÄѹǿÊÇ´óÁ¿ÆøÌå·Ö×Ó ¶ÔÈÝÆ÷µÄÅöײÒýÆðµÄ |