题目内容
如图所示,两个半径相同的半圆形光滑轨道置于竖直平面内,左右两端点等高,分别处于沿水平方向的匀强电场和匀强磁场中.两个相同的带正电小球同时从两轨道左端最高点由静止释放.M、N为轨道的最低点,则下列说法中正确的是( )
A.两个小球到达轨道最低点的速度vM<vN |
B.两个小球第一次经过轨道最低点时对轨道的压力FM>FN |
C.小球第一次到达M点的时间大于小球第一次到达N点的时间 |
D.在磁场中小球能到达轨道的另一端最高处,在电场中小球不能到达轨道另一端最高处 |
BD
解析试题分析:在匀强磁场中由于洛伦兹力不做功则下落的物体机械能守恒,,解得,在匀强电场中下落的物体由动能定理,,解得,知两个小球到达轨道最低点的速度vM>vN,故A选项错误;.两个小球第一次经过轨道最低点时轨道对小球为的支持力,由牛顿第二定律,即,因为速度vM>vN,得出FM>FN,故B选项正确;由于两球在电场和磁场的受力不同,故小球第一次到达M点的时间可能大于小球第一次到达N点的时间 ,C选项错误;由于洛伦兹力不做功,由动能定理知,在磁场中小球能到达轨道的另一端最高处,而在电场中由于小球受到的电场力做负功,所以由动能定理知在电场中小球不能到达轨道另一端最高处,D选项正确。
考点:洛伦兹力 机械能守恒 动能定理 最低点的牛顿第二定律方程
如图所示,静止在光滑水平面上的物体A,一端固定着处于自然状态的轻质弹簧.现对物体作用一水平恒力F,在弹簧被压缩到最短这一过程中,物体的速度和加速度变化的情况是( )
A.速度先增大后减小,加速度先增大后减小 |
B.速度先增大后减小,加速度先减小后增大 |
C.速度增大,加速度增大 |
D.速度增大,加速度减小 |
狄拉克曾经预言,自然界应该存在只有一个磁极的磁单极子,其周围磁感线呈均匀辐射状分布,距离它r处的磁感应强度大小为B=(k为常数)。磁单极S的磁场分布如图甲所示,它与如图乙所示负点电荷Q的电场分布相似。假设磁单极子S和负点电荷Q均固定,有一带电小球分别在S和Q附近做匀速圆周运动,则关于小球做匀速圆周运动的判断正确的是
A.若小球带正电,其运动轨迹平面可在S正上方,如图甲所示 |
B.若小球带正电,其运动轨迹平面可在Q正下方,如图乙所示 |
C.若小球带负电,其运动轨迹平面可在S正上方,如图甲所示 |
D.若小球带负电,其运动轨迹平面可在Q正下方,如图乙所示 |
一个质量为2kg的物体,在10个共点力作用下做匀速直线运动。现突然同时撤去大小分别为10N、12N和14N的三个力,其余的力大小方向均保持不变,关于此后该物体运动的说法中正确的是( )
A.可能做匀变速曲线运动,加速度大小可能是5m/s2 |
B.可能做匀速圆周运动,向心加速度大小5m/s2 |
C.可能做匀减速直线运动,加速度大小是20m/s2 |
D.一定做匀变速直线运动,加速度大小可能是10m/s2 |
如图所示,小车上固定一水平横杆,横杆左端的固定斜杆与竖直方向成α角,斜杆下端连接一质量为m的小球;横杆右端用一根细线悬挂相同的小球。当小车沿水平面做直线运动时,细线与竖直方向间的夹角β(β≠α)保持不变。设斜杆、细线对小球的作用力分别为F1、F2,下列说法正确的是( )
A.F1、F2大小相等 | B.F1、F2方向相同 |
C.小车加速度大小为gtanα | D.小车加速度大小为gtanβ |
如图所示,离地H高处有一个质量为m、带电量为+q的物体处于电场强度随时间变化规律为(、均为大于零的常数,电场水平向左为正方向)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为,已知。时,物体从墙上静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑后脱离墙面,此时速度大小为,最终落在地面上。则下列关于物体的运动说法正确的是:
A.当物体沿墙壁下滑时,物体先加速再做匀速直线运动 |
B.物体从脱离墙壁到落地之前的运动轨迹是一段直线 |
C.物体克服摩擦力所做的功 |
D.物体与墙壁脱离的时刻为 |
如图所示,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为 ( )
A.sin | B. | C.gsin | D.2gsin |
如图所示,平直木板AB倾斜放置,板上的P点距A端较近,小物体与木板之间的动摩擦因数由A到B逐渐减小。先让物体从A端由静止开始滑到B端,然后将A端着地,抬高B,使木板的倾角与前一过程相同,再让物体从B由静止开始下滑到A端。上述两过程相比较,下列说法中一定正确的是
A.物体经过P点的动能,前一过程较小 |
B.物体从顶端滑到底端的时间,前一过程较长 |
C.物体滑到底端时的速度,前一过程较大 |
D.物体从顶端滑到P点的过程中因摩擦产生的热量,前一过程较少 |