【题目】某公司为了预测下月产品销售情况,找出了近7个月的产品销售量(单位:万件)的统计表:
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售量(万件) |
但其中数据污损不清,经查证,,.
(1)请用相关系数说明销售量与月份代码有很强的线性相关关系;
(2)求关于的回归方程(系数精确到0.01);
(3)公司经营期间的广告宣传费(单位:万元)(),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)
参考公式及数据:,相关系数,当时认为两个变量有很强的线性相关关系,回归方程中斜率和截距的最小二乘估计公式分别为,.
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”,该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:
| 赞同限行 | 不赞同限行 | 合计 |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否有99%的把握认为“赞同限行与是否拥有私家车”有关;
(2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“没有私家车”人员的概率.
参考公式:K2=
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3..841 | 6.635 | 7.879 | 10.828 |