【题目】足球运动被誉为“世界第一运动”.为推广足球运动,某学校成立了足球社团由于报名人数较多,需对报名者进行“点球测试”来决定是否录取,规则如下:
(1)下表是某同学6次的训练数据,以这150个点球中的进球频率代表其单次点球踢进的概率.为加入足球社团,该同学进行了“点球测试”,每次点球是否踢进相互独立,将他在测试中所踢的点球次数记为,求;
(2)社团中的甲、乙、丙三名成员将进行传球训练,从甲开始随机地将球传给其他两人中的任意一人,接球者再随机地将球传给其他两人中的任意一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,接到第n次传球的人即为第次触球者,第n次触球者是甲的概率记为.
(i)求,,(直接写出结果即可);
(ii)证明:数列为等比数列.
【题目】如图,三棱柱中,底面为等边三角形,E,F分别为,的中点,,.
(1)证明:平面;
(2)求直线与平面所成角的大小.
【题目】已知直线与函数()的图象相交,将其中三个相邻交点从左到右依次记为A,B,C,且满足有下列结论:
①n的值可能为2
②当,且时,的图象可能关于直线对称
③当时,有且仅有一个实数ω,使得在上单调递增;
④不等式恒成立
其中所有正确结论的编号为( )
A.③B.①②C.②④D.③④
【题目】在平面直角坐标系中,直线过点,倾斜角为.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程.
(1)写出直线的参数方程及曲线的直角坐标方程;
(2)若与相交于,两点,为线段的中点,且,求.
【题目】近年来,国家为了鼓励高校毕业生自主创业,出台了许多优惠政策,以创业带动就业.某高校毕业生小李自主创业从事海鲜的批发销售,他每天以每箱300元的价格购入基围虾,然后以每箱500元的价格出售,如果当天购入的基围虾卖不完,剩余的就作垃圾处理.为了对自己的经营状况有更清晰的把握,他记录了150天基围虾的日销售量(单位:箱),制成如图所示的频数分布条形图.
(1)若小李一天购进12箱基围虾.
①求当天的利润(单位:元)关于当天的销售量(单位:箱,)的函数解析式;
②以这150天记录的日销售量的频率作为概率,求当天的利润不低于1900元的概率;
(2)以上述样本数据作为决策的依据,他计划今后每天购进基围虾的箱数相同,并在进货量为11箱,12箱中选择其一,试帮他确定进货的方案,以使其所获的日平均利润最大.
【题目】已知四棱锥中,底面为正方形,为正三角形,是的中点,过的平面平行于平面,且平面与平面的交线为,与平面的交线为.
(1)在图中作出四边形(不必说出作法和理由);
(2)若,四棱锥的体积为,求点到平面的距离.
【题目】某校同时提供、两类线上选修课程,类选修课每次观看线上直播分钟,并完成课后作业分钟,可获得积分分;类选修课每次观看线上直播分钟,并完成课后作业分钟,可获得积分分.每周开设次,共开设周,每次均为独立内容,每次只能选择类、类课程中的一类学习.当选择类课程次,类课程次时,可获得总积分共_______分.如果规定学生观看直播总时间不得少于分钟,课后作业总时间不得少于分钟,则通过线上选修课的学习,最多可以获得总积分共________分.
【题目】如图,在四棱锥中,底面是边长为2的菱形,,为正三角形,,为线段的中点.
(2)若,求二面角的大小.
【题目】设函数(),.
(1)求的极值;
(2)当时,函数的图象恒在直线的上方,求实数的取值范围;
【题目】随着现代电子技术的迅猛发展,关于元件和系统可靠性的研究已发展成为一门新的学科——可靠性理论.在可靠性理论中,一个元件正常工作的概率称为该元件的可靠性.元件组成系统,系统正常工作的概率称为该系统的可靠性.现有(,)种电子元件,每种2个,每个元件的可靠性均为().当某元件不能正常工作时,该元件在电路中将形成断路.现要用这个元件组成一个电路系统,有如下两种连接方案可供选择,当且仅当从A到B的电路为通路状态时,系统正常工作.
(1)(i)分别写出按方案①和方案②建立的电路系统的可靠性、(用和表示);
(ii)比较与的大小,说明哪种连接方案更稳定可靠;
(2)设,,已知按方案②建立的电路系统可以正常工作,记此时系统中损坏的元件个数为,求随机变量的分布列和数学期望.