题目内容
【题目】足球运动被誉为“世界第一运动”.为推广足球运动,某学校成立了足球社团由于报名人数较多,需对报名者进行“点球测试”来决定是否录取,规则如下:
(1)下表是某同学6次的训练数据,以这150个点球中的进球频率代表其单次点球踢进的概率.为加入足球社团,该同学进行了“点球测试”,每次点球是否踢进相互独立,将他在测试中所踢的点球次数记为,求;
(2)社团中的甲、乙、丙三名成员将进行传球训练,从甲开始随机地将球传给其他两人中的任意一人,接球者再随机地将球传给其他两人中的任意一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,接到第n次传球的人即为第次触球者,第n次触球者是甲的概率记为.
(i)求,,(直接写出结果即可);
(ii)证明:数列为等比数列.
【答案】(1)(2)(i),,(ii)证明见解析;
【解析】
(1)先求出踢一次点球命中的概率,然后根据相互独立事件的乘法公式分别求出取1,2,3的概率,再根据离散型随机变量的期望公式可求得结果;
(2)(i)根据传球顺序分析可得答案;(ii)根据题意可得,再变形为,根据等比数列的定义可证结论.
(1)这150个点球中的进球频率为,
则该同学踢一次点球命中的概率,
由题意,可能取1,2,3,则
,,,
则的期望.
(2)(i)因为从甲开始随机地将球传给其他两人中的任意一人,所以第1次触球者是甲的概率,显然第2次触球者是甲的概率,第2次传球有两种可能,所以第3次触球者是甲的概率概,
(ii)∵第n次触球者是甲的概率为,
所以当时,第次触球者是甲的概率为,第次触球者不是甲的概率为,
则.
从而,又,
∴是以为首项,公比为的等比数列.
【题目】闰月年指农历里有闰月的年份,比如2020年是闰月年,4月23日至5月22日为农历四月,5月23日至6月20日为农历闰四月.农历置闰月是为了农历年的平均长度接近回归年:农历年中的朔望月的平均长度为29.5306日,日,回归年的总长度为365.2422日,两者相差10.875日.因此,每19年相差206.625日,约等于7个朔望月.这样每19年就有7个闰月年.以下是1640年至1694年间所有的闰月年:
1640 | 1642 | 1645 | 1648 | 1651 | 1653 | 1656 |
1659 | 1661 | 1664 | 1667 | 1670 | 1672 | 1675 |
1678 | 1680 | 1 683 | 1686 | 1689 | 1691 | 1694 |
则从2020年至2049年,这30年间闰月年的个数为( )
A.10B.11C.12D.13