【题目】如图,已知圆柱,底面半径为1,高为2,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其路径最短时在侧面留下的曲线记为:将轴截面绕着轴,逆时针旋转 角到位置,边与曲线相交于点.
(1)当时,求证:直线平面;
(2)当时,求二面角的余弦值.
【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.
(1)估计这200名学生健康指数的平均数和样本方差(同一组数据用该组区间的中点值作代表);
(2)由频率分布直方图知,该市学生的健康指数近似服从正态分布,其中近似为样本平均数,近似为样本方差.
①求;
②已知该市高三学生约有10000名,记体质健康指数在区间的人数为,试求.
附:参考数据,
若随机变量服从正态分布,则,,.
【题目】已知数列{an}的首项为1,若对任意的n∈N*,数列{an}满足an+1﹣3an<2,则称数列{an}具有性质L.
(Ⅰ)判断下面两个数列是否具有性质L:
①1,3,5,7,9,…;
②1,4,16,64,256,…;
(Ⅱ)若{an}是等差数列且具有性质L,其前n项和Sn满足Sn<2n2+2n(n∈N*),求数列{an}的公差d的取值范围;
(Ⅲ)若{an}是公比为正整数的等比数列且具有性质L,设bn=an(n∈N*),且数列{bn}不具有性质L,求数列{an}的通项公式.
【题目】已知正三棱柱的底面边长为,为的中点,平面与平面所成的锐二面角的正切值是,则四棱锥外接球的表面积为________.
【题目】已知函数,其中,,为的零点:且恒成立,在区间上有最小值无最大值,则的最大值是( )
A. 11B. 13C. 15D. 17
【题目】中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术;蕴含了极致的数学美和丰富的传统文化信息,现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为( )
A. B. C. D.
【题目】在直角坐标系xOy中,曲线C的参数方程为(α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.直线1的极坐标方程为.
(Ⅰ)求C的普通方程和l的直角坐标方程;
(Ⅱ)设直线l与x轴和y轴的交点分别为A,B,点M在曲线C上,求△MAB面积的最大值.
【题目】已知椭圆C:1(a>b>0),其右焦点为F(1,0),离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F作倾斜角为α的直线l,与椭圆C交于P,Q两点.
(ⅰ)当时,求△OPQ(O为坐标原点)的面积;
(ⅱ)随着α的变化,试猜想|PQ|的取值范围,并证明你的猜想.
【题目】已知函数f(x)=lnx﹣x2+ax,a∈R.
(Ⅰ)证明lnx≤x﹣1;
(Ⅱ)若a≥1,讨论函数f(x)的零点个数.
【题目】已知函数f(x)=ax2+ax﹣1(a∈R).
(Ⅰ)当a=1时,求f(x)>0的解集;
(Ⅱ)对于任意x∈R,不等式f(x)<0恒成立,求a的取值范围;
(Ⅲ)求关于x的不等式f(x)<0的解集.